Exact solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky system using Sardar sub-equation method

dc.authorscopusid57439262400
dc.authorscopusid57188740155
dc.authorscopusid57193690600
dc.authorscopusid57200208868
dc.authorscopusid23028598900
dc.authorwosidAli, Karmina/AAU-7582-2021
dc.authorwosidtarla, sibel/AEA-3594-2022
dc.authorwosidUZUN, BERNA/GXN-1283-2022
dc.authorwosidYusuf, Abdullahi/L-9956-2018
dc.contributor.authorTarla, Sibel
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorYusuf, Abdullahi
dc.contributor.authorUzun, Berna
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-09-11T07:41:52Z
dc.date.available2024-09-11T07:41:52Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Tarla, Sibel] Firat Univ, Fac Sci, Dept Math, Elazig, Turkiye; [Ali, Karmina K.] Univ Zakho, Coll Sci, Dept Math, Zakho, Iraq; [Ali, Karmina K.] Knowledge Univ, Coll Sci, Dept Comp Sci, Erbil 44001, Iraq; [Yusuf, Abdullahi] Biruni Univ, Dept Comp Engn, Istanbul, Turkiye; [Yusuf, Abdullahi; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Yusuf, Abdullahi] Fed Univ Dutse, Dept Math, Jigawa, Nigeria; [Uzun, Berna] Near East Univ, Dept Math, TRNC Mersin 10, TR-99138 Nicosia, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.description.abstractIn this paper, the new modification of the Sardar sub-equation method is used to generate a wide variety of exact solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky system. We focus on investigating the Konopelchenko-Dubrovsky equation, which serves as a mathematical model for studying nonlinear waves in the field of mathematical physics. This equation specifically captures the behavior of waves with weak dispersion, allowing us to explore the intricate dynamics and characteristics associated with such wave phenomena. By delving into the properties and solutions of this system, we aim to deepen our understanding of nonlinear wave propagation and its implications in the broader field of mathematical physics. The exact solutions generated through this modified method provide valuable insights into the propagation and interaction of waves with weak dispersion in the system. The obtained novel solutions are expressed as hyperbolic, and trigonometric functions. The proposed model successfully constructs various types of solutions, including singular, dark, bright, trigonometric, periodic, dark-bright, exponential, and hyperbolic. These solutions are presented with appropriate parameter values in both 3D and 2D graphics.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1142/S0217984924504852
dc.identifier.issn0217-9849
dc.identifier.issn1793-6640
dc.identifier.scopus2-s2.0-85200318068
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1142/S0217984924504852
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6249
dc.identifier.wosWOS:001280356400003
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExact solutionsen_US
dc.subjectthe (2+1)-dimensional Konopelchenko-Dubrovsky systemen_US
dc.subjectnew modification of the Sardar sub-equation methoden_US
dc.titleExact solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky system using Sardar sub-equation methoden_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files