A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations
dc.authorid | S M, SIVALINGAM/0000-0003-0818-9007 | |
dc.authorid | Kumar, Pushpendra/0000-0002-7755-2837 | |
dc.authorscopusid | 58413452000 | |
dc.authorscopusid | 57217132593 | |
dc.authorscopusid | 55363702400 | |
dc.authorwosid | S M, SIVALINGAM/HOH-3172-2023 | |
dc.contributor.author | Sivalingam, S. M. | |
dc.contributor.author | Kumar, Pushpendra | |
dc.contributor.author | Govindaraj, V. | |
dc.date.accessioned | 2024-05-25T12:19:18Z | |
dc.date.available | 2024-05-25T12:19:18Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Sivalingam, S. M.; Govindaraj, V.] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India; [Kumar, Pushpendra] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Istanbul, Turkiye; [Kumar, Pushpendra] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description | S M, SIVALINGAM/0000-0003-0818-9007; Kumar, Pushpendra/0000-0002-7755-2837 | en_US |
dc.description.abstract | This study aims to develop a first-order Chebyshev neural network-based technique for solving ordinary and partial distributed-order fractional differential equations. The neural network is used as a trial solution to construct the loss function. The loss function is utilized to train the neural network via an extreme learning machine and obtain the solution. The novelty of this work is developing and implementing a neural network-based framework for distributed-order fractional differential equations via an extreme learning machine. The proposed method is validated on several test problems. The error metrics utilized in the study include the absolute error and the L-2 error. A comparison with other previously available approaches is presented. Also, we provide the computation time of the method. | en_US |
dc.description.sponsorship | National Board for Higher Mathematics, NBHM; University Grants Commission, UGC, (Ref.202122-TN13000109); Department of Atomic Energy, Government of India, DAE, (02011/18/2023 NBHM (R.P)/ R&D II/5952) | en_US |
dc.description.sponsorship | UGCNFOBC Ph.D. Fellowship [202122-TN13000109]; National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India [02011/18/2023NBHM (R.P)/RDII/5952] | en_US |
dc.description.sponsorship | S.M. Sivalingam received the financial support of UGCNFOBC Ph.D. Fellowship (Ref. 202122-TN13000109). V. Govindaraj would like to thank the National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India,for funding the research project(FileNo. 02011/18/2023NBHM (R.P)/R&DII/5952). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1016/j.camwa.2024.04.005 | |
dc.identifier.endpage | 165 | en_US |
dc.identifier.issn | 0898-1221 | |
dc.identifier.issn | 1873-7668 | |
dc.identifier.scopus | 2-s2.0-85191336801 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 150 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.camwa.2024.04.005 | |
dc.identifier.volume | 164 | en_US |
dc.identifier.wos | WOS:001289056100001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.ispartof | Computers and Mathematics with Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Distributed-order fractional derivatives | en_US |
dc.subject | Caputo derivative | en_US |
dc.subject | Neural network | en_US |
dc.subject | Extreme learning machine | en_US |
dc.title | A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |