A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations

dc.authoridS M, SIVALINGAM/0000-0003-0818-9007
dc.authoridKumar, Pushpendra/0000-0002-7755-2837
dc.authorscopusid58413452000
dc.authorscopusid57217132593
dc.authorscopusid55363702400
dc.authorwosidS M, SIVALINGAM/HOH-3172-2023
dc.contributor.authorSivalingam, S. M.
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorGovindaraj, V.
dc.date.accessioned2024-05-25T12:19:18Z
dc.date.available2024-05-25T12:19:18Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Sivalingam, S. M.; Govindaraj, V.] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India; [Kumar, Pushpendra] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Istanbul, Turkiye; [Kumar, Pushpendra] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionS M, SIVALINGAM/0000-0003-0818-9007; Kumar, Pushpendra/0000-0002-7755-2837en_US
dc.description.abstractThis study aims to develop a first-order Chebyshev neural network-based technique for solving ordinary and partial distributed-order fractional differential equations. The neural network is used as a trial solution to construct the loss function. The loss function is utilized to train the neural network via an extreme learning machine and obtain the solution. The novelty of this work is developing and implementing a neural network-based framework for distributed-order fractional differential equations via an extreme learning machine. The proposed method is validated on several test problems. The error metrics utilized in the study include the absolute error and the L-2 error. A comparison with other previously available approaches is presented. Also, we provide the computation time of the method.en_US
dc.description.sponsorshipNational Board for Higher Mathematics, NBHM; University Grants Commission, UGC, (Ref.202122-TN13000109); Department of Atomic Energy, Government of India, DAE, (02011/18/2023 NBHM (R.P)/ R&D II/5952)en_US
dc.description.sponsorshipUGCNFOBC Ph.D. Fellowship [202122-TN13000109]; National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India [02011/18/2023NBHM (R.P)/RDII/5952]en_US
dc.description.sponsorshipS.M. Sivalingam received the financial support of UGCNFOBC Ph.D. Fellowship (Ref. 202122-TN13000109). V. Govindaraj would like to thank the National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India,for funding the research project(FileNo. 02011/18/2023NBHM (R.P)/R&DII/5952).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation3
dc.identifier.doi10.1016/j.camwa.2024.04.005
dc.identifier.endpage165en_US
dc.identifier.issn0898-1221
dc.identifier.issn1873-7668
dc.identifier.scopus2-s2.0-85191336801
dc.identifier.scopusqualityQ1
dc.identifier.startpage150en_US
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2024.04.005
dc.identifier.volume164en_US
dc.identifier.wosWOS:001289056100001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.ispartofComputers and Mathematics with Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistributed-order fractional derivativesen_US
dc.subjectCaputo derivativeen_US
dc.subjectNeural networken_US
dc.subjectExtreme learning machineen_US
dc.titleA Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files