Laminar Natural Convection of Water-Fe3O4 Magnetic Nanofluid Over an Annular Finned Vertical Cylinder with a Non-Uniform Magnetic Field

dc.authorscopusid 57224274882
dc.authorscopusid 57193954651
dc.authorscopusid 57225906716
dc.authorscopusid 57208127315
dc.authorscopusid 23028598900
dc.contributor.author Miansari, Mehdi
dc.contributor.author Gholamnia, Mehdi
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Hekmatifar, M.
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2025-10-15T16:45:34Z
dc.date.available 2025-10-15T16:45:34Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Miansari, Mehdi] Tech & Vocat Univ, Dept Mech Engn, Tehran, Iran; [Gholamnia, Mehdi] Islamic Azad Univ, Dept Mech Engn, Qaemshahr Branch, Qaemshahr, Iran; [Jasim, Dheyaa J.] Univ Al Maarif, Coll Dent, Al Anbar 31001, Iraq; [Hekmatifar, M.] Shabihsazan Ati Pars, Fast Comp Ctr, Tehran, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Khazar Univ, Res Ctr Appl Math, Baku, Azerbaijan en_US
dc.description.abstract This study investigates the laminar natural convection of water-Fe3O4 nanofluid with a nanoparticle volume fraction of 4 % around an annular finned vertical cylinder under the influence of a non-uniform magnetic field generated by an electric conductor wire. The three-dimensional problem is solved using the finite volume method, and the effects of fin numbers (2, 4, 8, 12), magnetic field intensities (2 x 106, 5 x 106, 7.5 x 106), and Rayleigh numbers (5 x 104-107) on heat transfer and fluid flow characteristics are analyzed. Results demonstrate that the addition of fins enhances cooling efficiency by generating secondary flows and increasing velocity gradients, particularly at higher Rayleigh numbers. In the absence of a magnetic field, increasing the number of fins from 2 to 12 results in a 28 % to 44 % increase in heat flux, while in the presence of a magnetic field, this increase ranges from 44 % to 150 %. Furthermore, increasing the magnetic field intensity from zero to 7.5 x 106 leads to a heat flux improvement of 26 % to 148 % for a simple cylinder, and 21 % to 277 % for a cylinder with four fins. The study also highlights the non-linear interaction between Rayleigh numbers and magnetic field intensity, where heat transfer initially increases with Rayleigh number but decreases under high magnetic fields due to the suppression of convective flows. These findings underscore the critical role of fin configuration and magnetic field intensity in optimizing heat transfer, with the most effective results occurring at specific Rayleigh numbers and magnetic field strengths. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.tsep.2025.104063
dc.identifier.issn 2451-9049
dc.identifier.scopus 2-s2.0-105015136080
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.tsep.2025.104063
dc.identifier.uri https://hdl.handle.net/20.500.14517/8469
dc.identifier.volume 66 en_US
dc.identifier.wos WOS:001583042800001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Thermal Science and Engineering Progress en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Non-Uniform Magnetic Field en_US
dc.subject Annular Fin en_US
dc.subject Natural Convection en_US
dc.subject Nanofluid en_US
dc.title Laminar Natural Convection of Water-Fe3O4 Magnetic Nanofluid Over an Annular Finned Vertical Cylinder with a Non-Uniform Magnetic Field en_US
dc.type Article en_US
dspace.entity.type Publication

Files