Quadratic High Step-Up Interleaved Z-Source DC-DC Converters Based on Asymmetric Gamma Cell
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE-Inst Electrical Electronics Engineers Inc
Abstract
This article proposes a group of interleaved dc-dc converters based on quasi-impedance source cells with quadratic voltage gain. Using the developed asymmetric gamma impedance source cell with an interleaved technique, the proposed structure minimizes the current stress on the mosfets, the fluctuation of the input current, and losses. Apart from the benefits mentioned above, the proposed structure includes a shared ground, fewer components, low voltage stress across the components, and high efficiency. Necessary theoretical studies are carried out on the proposed structures, including voltage gain calculations, element voltage stress, element design, and element loss calculations. Additionally, a thorough analysis compares the proposed structures with other interleaved converters. Finally, a 400-watt laboratory sample of the first proposed design, operating with a 30 V input voltage, is implemented to validate the stated advantages. The prototype implemented at 400 watts has an efficiency of 96.7%.
Description
Keywords
Voltage, Inductors, Impedance, Capacitors, Stress, High-Voltage Techniques, DC-DC Power Converters, Windings, Switches, Inductance, Coupled Inductors, DC-DC Converter, Impedance Source Cell, Interleaved Converter
Turkish CoHE Thesis Center URL
WoS Q
Q1
Scopus Q
Q1
Source
IEEE Transactions on Power Electronics
Volume
40
Issue
12
Start Page
17858
End Page
17868