An RBF-based artificial neural network for prediction of dynamic viscosity of MgO/SAE 5W30 oil hybrid nano-lubricant to obtain the best performance of energy systems

dc.authoridJasim, Dheyaa Jumaah/0000-0001-7259-3392
dc.authoridEftekhari, SeyedAli/0000-0002-9730-4232
dc.authoridtoghraie, davood/0000-0003-3344-8920
dc.authorscopusid58777949400
dc.authorscopusid57225906716
dc.authorscopusid22136195900
dc.authorscopusid16416765400
dc.authorscopusid57208127315
dc.authorscopusid23028598900
dc.authorscopusid57366147000
dc.authorwosidJasim, Dheyaa Jumaah/GPS-5013-2022
dc.authorwosidEftekhari, SeyedAli/AAG-3342-2019
dc.contributor.authorGao, Jie
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorEftekhari, S. Ali
dc.contributor.authorHekmatifar, Maboud
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorToghraie, Davood
dc.date.accessioned2024-05-25T11:28:27Z
dc.date.available2024-05-25T11:28:27Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Gao, Jie] Guangzhou Coll Technol & Business, Sch Engn, Guangzhou 510850, Guangdong, Peoples R China; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Eftekhari, S. Ali; Hekmatifar, Maboud; Toghraie, Davood] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Shahdost, Farzad Tat] Islamic Azad Univ, Garmsar Branch, Elect Control Engn, Semnan, Iranen_US
dc.descriptionJasim, Dheyaa Jumaah/0000-0001-7259-3392; Eftekhari, SeyedAli/0000-0002-9730-4232; toghraie, davood/0000-0003-3344-8920en_US
dc.description.abstractTechnological progress and complications in microfluidics usage have led researchers to use nanomaterials in different scientific fields. The properties and characteristics of hybrid Nanofluids are more enhanced compared to nanofluids based on single nanoparticles and conventional liquid. Recently, modeling methods have replaced most common statistical methods. Due to the high accuracy of the response and generalizability in various conditions, artificial neural networks (ANNs) to estimate nanofluids' viscosity and thermal conductivity have become common. Dynamic viscosity (mu) (estimation analyzes one of the key factors in determining the hydro-dynamic behavior of nanofluids. In this manuscript, an RBF-ANN is used to simulate the input-output relation of dynamic viscosity of the MgO-SAE 5W30 Oil hybrid nanofluid versus three important parameters, including volume fraction of nanoparticles, temperature, and shear rate. The results show that for this nanofluid, by increasing temperature and shear rate, the dynamic viscosity is decreased. In contrast, the volume fraction of nanoparticles directly affects the output, although this consequence can be neglected. By increasing the tem-perature from 5 degrees to 55 degrees C, the dynamic viscosity would decrease. Also, changing the shear rate from 50 to 1000 rpm decreases the dynamic viscosity from 400 cP to 25 cP. It is worth mentioning that the obtained trends and deviation of dynamic viscosity for MgO-SAE 5W30 Oil hybrid nanofluid versus temperature, the volume fraction of nanoparticles, and shear rate can be used by the academic community as well as an industrial section to obtain the best performance of energy systems based on this nanofluid.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.mtcomm.2023.107836
dc.identifier.issn2352-4928
dc.identifier.scopus2-s2.0-85180528024
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2023.107836
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1156
dc.identifier.volume38en_US
dc.identifier.wosWOS:001141228500001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRadial Basis Functionen_US
dc.subjectANNen_US
dc.subjectHybrid nanofluiden_US
dc.subjectDynamic viscosityen_US
dc.titleAn RBF-based artificial neural network for prediction of dynamic viscosity of MgO/SAE 5W30 oil hybrid nano-lubricant to obtain the best performance of energy systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files