Uniform separable differential operators with parameters

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

In this paper we study boundary value problems for anisotropic partial differential-operator equations with parameters. The principal part of the appropriate differential operators are not self-adjoint. Several conditions for the uniform separability in weighted Banach-valued L-p-spaces are given. Sharp estimates for the resolvent of the corresponding differential operator are obtained. In particular the positivity and R-positivity of these operators are established. As an application we study the separability of degenerate DOEs, maximal regularity for degenerate abstract parabolic problem with parameters, the uniform separability of finite and infinite systems for degenerate anisotropic partial differential equations with parameters. (c) 2009 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Description

Keywords

Differential equations with parameters, Banach-valued function spaces, Differential-operator equations, Semigroups of operators, Operator-valued Fourier multipliers, Interpolation of Banach spaces

Turkish CoHE Thesis Center URL

Fields of Science

Citation

4

WoS Q

Q1

Scopus Q

Q1

Source

Volume

347

Issue

1

Start Page

2

End Page

16