A Gudermannian neural network performance for the numerical environmental and economic model

dc.authorscopusid 56184182600
dc.authorscopusid 57203870179
dc.authorscopusid 23028598900
dc.authorscopusid 55945069400
dc.contributor.author Sabir, Zulqurnain
dc.contributor.author Umar, Muhammad
dc.contributor.author Salahshour, Soheil
dc.contributor.author Nicolas, Rana
dc.date.accessioned 2024-05-25T11:27:55Z
dc.date.available 2024-05-25T11:27:55Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Nicolas, Rana] Lebanese American Univ, Dept Nat Sci, Beirut, Lebanon en_US
dc.description.abstract The present work is to exploit the Gudermannian neural network (GNN) using the global competency of genetic algorithm (GA) and quick local refinements of sequential quadratic programming approach (SQPA), i.e., GNNGA-SQPA for the nonlinear economic and environmental system. The differential form of the nonlinear system depends upon three classes, system capability of industrial elements, implementation cost of control values and a new diagnostics technical elimination cost. An error-based fitness function is constructed using the differential system and then optimized by using the hybrid competency of the GA-SQPA. Ten numbers of neurons, a merit Gudermannian function, and the suitable weight vectors are presented in the neural network construction. The accuracy of the GNN-GA-SQPA is assessed through the comparisons and the negligible performances of absolute error. The statistical observations using single and multiple trials validate the stability of the scheme. en_US
dc.description.sponsorship President Intramural Research Fund (PIRF) , at the Lebanese American University en_US
dc.description.sponsorship This work has been supported by the President Intramural Research Fund (PIRF) , at the Lebanese American University. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.aej.2023.12.052
dc.identifier.endpage 488 en_US
dc.identifier.issn 1110-0168
dc.identifier.issn 2090-2670
dc.identifier.scopus 2-s2.0-85181951562
dc.identifier.scopusquality Q1
dc.identifier.startpage 478 en_US
dc.identifier.uri https://doi.org/10.1016/j.aej.2023.12.052
dc.identifier.uri https://hdl.handle.net/20.500.14517/1112
dc.identifier.volume 87 en_US
dc.identifier.wos WOS:001153643300001
dc.identifier.wosquality Q1
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject Gudermannian neural network en_US
dc.subject Nonlinear economic and environmental system en_US
dc.subject Global search technique en_US
dc.subject Local search method en_US
dc.subject Reference solutions en_US
dc.title A Gudermannian neural network performance for the numerical environmental and economic model en_US
dc.type Article en_US
dc.wos.citedbyCount 4

Files