Investigating the Effect of Volume Fraction on Brownian Displacement, Thermophoresis, and Thermal Behavior of Graphene/Water Nanofluid by Molecular Dynamics Simulation

dc.authorid Atiah, Younis M./0000-0003-2861-6643
dc.authorscopusid 56512425600
dc.authorscopusid 59541076200
dc.authorscopusid 59375113300
dc.authorscopusid 58095478400
dc.authorscopusid 59541225200
dc.authorscopusid 57215931407
dc.authorscopusid 23028598900
dc.authorwosid Atiah, Younis/U-5977-2019
dc.contributor.author Lin, Bingchen
dc.contributor.author Ali, Ali B. M.
dc.contributor.author Babadoust, Shahram
dc.contributor.author Al-Zahy, Younis Mohamed Atiah
dc.contributor.author Castaneda, Jorge Luis Yaulema
dc.contributor.author Abdullaeva, Barno
dc.contributor.author Esmaeili, Sh.
dc.date.accessioned 2025-02-17T18:49:53Z
dc.date.available 2025-02-17T18:49:53Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Lin, Bingchen] Jiaozuo Normal Coll, Jiaozuo 541000, Henan, Peoples R China; [Ali, Ali B. M.] Univ Warith Al Anbiyaa, Coll Engn, Air Conditioning Engn Dept, Karbala, Iraq; [Babadoust, Shahram] Cihan Univ Erbil, Dept Med Biochem Anal, Erbil, Kurdistan Reg, Iraq; [Al-Zahy, Younis Mohamed Atiah] Misan Univ, Coll Educ, Dept Phys, Maysan, Iraq; [Castaneda, Jorge Luis Yaulema] Escuela Super Politecn Chimborazo ESPOCH, Fac Ciencias, Grp Invest LEISHPAREC, Panamericana 1 1-2, Riobamba 060155, Ecuador; [Abdullaeva, Barno] Tashkent State Pedag Univ, Dept Math & Informat Technol, Vice Rector Sci Affairs, Tashkent, Uzbekistan; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Tuzla, Istanbul, Turkiye; [Esmaeili, Sh.] Fast Comp Ctr, Shabihsazan Ati Pars, Tehran, Iran en_US
dc.description Atiah, Younis M./0000-0003-2861-6643 en_US
dc.description.abstract Nanotechnology focuses on materials at the nanoscale, including nanoparticles and nanofluids are created by dispersing nanoparticles in a base fluid. This study examined the impact of volume fraction on thermophoresis, thermal conductivity, and Brownian motion in graphene/water nanofluid through molecular dynamics simulations. Simulations were performed at a constant temperature of 300 K, representative of room temperature conditions for thermal applications. This research aimed to understand how the amount of graphene in the water-based nanofluid affected these properties, which were crucial for heat transfer and thermal management systems. The study examined the effects of various nanoparticle volume fractions (1 %, 3 %, 6 %, and 10 %), ranging from dilute to semi-concentrated nanofluids, on thermal conductivity, Brownian motion, and thermophoresis. Results indicate an increase in average Brownian displacement and thermophoresis displacement from 3.06 and 23.88 & Aring; to 4.14 and 26.88 & Aring;, respectively, as the volume fraction increases from 1 % to 6 %. However, as the volume fraction increased from 6 % to 10 %, these values decreased to 3.35 & Aring; and 23.99 & Aring;. This decrease may be attributed to increased interparticle interactions and clustering at higher volume fractions. After 10 ns, increasing the nanoparticle volume fraction to 6 % raised heat flux and thermal conductivity from 39.54 W/m2 and 0.36 W/m & sdot;K to 45.05 W/m2 and 0.46 W/m & sdot;K. However, at a 10 % volume fraction, both parameters decreased to 39.56 W/m2 and 0.37 W/m & sdot;K, respectively. The temperature profile shows that increasing the graphene volume fraction to 6 % raised the maximum temperature from 1415 K to 1879 K; further increasing the volume fraction to 10 % decreased it to 1572 K. These findings indicate that the volume percentage of graphene nanoparticles significantly affected Brownian displacement, thermophoresis displacement, heat flux, thermal conductivity, and maximum temperature in the nanofluid. An optimal volume fraction of approximately 6 % is identified for enhancing thermal performance. Overall, the volume fraction, along with nanoparticle size, shape, and dispersion stability, was crucial in determining the atomic and thermal behavior of nanofluids, highlighting the need to identify the optimal concentration for superior performance. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.icheatmasstransfer.2025.108648
dc.identifier.issn 0735-1933
dc.identifier.issn 1879-0178
dc.identifier.scopus 2-s2.0-85216900138
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.icheatmasstransfer.2025.108648
dc.identifier.volume 162 en_US
dc.identifier.wos WOS:001423202900001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Brownian Displacement en_US
dc.subject Thermophoresis Displacement en_US
dc.subject Thermal Behavior en_US
dc.subject Molecular Dynamics Simulation en_US
dc.subject Graphene/Water Nanofluid en_US
dc.title Investigating the Effect of Volume Fraction on Brownian Displacement, Thermophoresis, and Thermal Behavior of Graphene/Water Nanofluid by Molecular Dynamics Simulation en_US
dc.type Article en_US

Files