Incorporation of azithromycin into akermanite-monticellite nanocomposite scaffolds: Preparation, biological properties, and drug release characteristics

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Bioceramics composed of calcium and magnesium silicates have garnered increasing attention for the development of porous scaffolds in bone tissue engineering (BTE). This heightened interest is primarily attributed to their remarkable bioactivity and their capacity to form strong bonds with hard tissue. Fabricating nanocomposite scaffolds is a recognized approach for improving the characteristics of scaffolds used in BTE. This research investigates the mechanical and biological properties, antibacterial activity, and drug-release characteristics of scaffolds composed of akermanite (AKT), monticellite (MON), and monticellite-akermanite (MON-AKT). These scaffolds were fabricated utilizing the space holder process. Additionally, the in vitro drug release profile and antimicrobial activity of Azithromycin (AZT)-loaded MON-AKT composite scaffolds were investigated. The findings showed that the Mon-15 wt% AKT nanocomposite scaffold had the highest density, the smallest grain and micropore sizes, and the lowest porosity. In contrast, integrating AKT into MON-based composite scaffolds resulted in materials characterized by high mechanical strength and stability within physiological environments. The MON-AKT nanocomposite scaffolds exhibited cytocompatibility and demonstrated a high level of alkaline phosphatase (ALP) activity in osteogenic studies. Furthermore, antimicrobial activity assessments revealed that the AZT-encapsulated MON-AKT composite scaffolds effectively inhibited the growth of both S. aureus and E. coli bacteria. The outcomes showed that the antibacterial efficacy of the scaffold depends on both the amount of AZT and the type of bacteria. Overall, MON-AKT/3AZT scaffolds exhibited significantly superior bacterial inhibition compared to other scaffolds, making it a promising option for treating bone tissue defects.

Description

Najafinezhad, Aliakbar/0000-0002-3909-4732

Keywords

Monticellite-akermanite composite scaffold, Mechanical strength, Cytotoxicity, Antimicrobial activity, Drug delivery

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q1

Scopus Q

Q1

Source

Ceramics International

Volume

50

Issue

21

Start Page

43841

End Page

43853