The pool boiling heat transfer of ammonia/Fe 3 O 4 nano-refrigerant in the presence of external magnetic field and heat flux: A molecular dynamics approach

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Pool boiling is distinguished by its capacity to eliminate excessive heat fluxes (HFs) at low temperatures. In recent decades, the optimal design of flooded evaporators elevated the significance of pool boiling HT with refrigerant to conserve natural resources and energy. The industry highly regards this process on account of its superior heat transfer (HT) coefficient in comparison to other HT mechanisms. Among the types of boiling, pool boiling has a special place due to its ability to remove HFs at low temperatures. This study was the first to investigate the boiling characteristics of the ammonia/Fe 3 O 4 nano -refrigerant in a copper (Cu) nanochannel (NC) through molecular dynamics (MD) simulations. The primary goal was to investigate the effect of external HF (EHF) and external magnetic field amplitude (EMFA) on nanostructures ' atomic behavior (AB) and thermal behavior (TB). The research findings indicate that increasing the applied EHF led to increased particle movement and the HT rate. By changing the EHF, boiling behavior in the nano -refrigerant may also be seen. Maximum (Max) velocity (Vel.) increased to 8.970 & Aring;/ps when the EHF increases to 0.5 W/m 2 . Atomic collisions and particle mobility both increase when the EHF increases. Therefore, the maximum temperature value increases to 359.46 K. When the EMFA applied to the nano -refrigerant reaches to 0.5 T, the maximum values of the parameters, such as the Temp. and the velocity, reach to 410.07 K, and 11.802 & Aring;/ps, respectively.

Description

Basem, Ali/0000-0002-6802-9315

Keywords

Pool boiling, Nano-refrigerant, Molecular dynamics, External magnetic field

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q1

Scopus Q

Q1

Source

International Journal of Heat and Mass Transfer

Volume

227

Issue

Start Page

End Page