An operational matrix approach with Vieta-Fibonacci polynomial for solving generalized Caputo fractal-fractional differential equations

dc.authorid S M, SIVALINGAM/0000-0003-0818-9007
dc.authorid Mutum, Zico/0000-0002-9168-5126
dc.authorid Kumar, Pushpendra/0000-0002-7755-2837
dc.authorscopusid 58001936300
dc.authorscopusid 57217132593
dc.authorscopusid 55363702400
dc.authorscopusid 57291881500
dc.authorscopusid 57444362300
dc.authorscopusid 55248327700
dc.authorwosid Kumar, Pushpendra/AAA-1223-2021
dc.authorwosid meetei, zico/AAP-1763-2020
dc.authorwosid Hamali, Waleed/GNM-6008-2022
dc.authorwosid S M, SIVALINGAM/HOH-3172-2023
dc.contributor.author Sivalingam, S. M.
dc.contributor.author Kumar, Pushpendra
dc.contributor.author Govindaraj, V.
dc.contributor.author Qahiti, Raed Ali
dc.contributor.author Hamali, Waleed
dc.contributor.author Meetei, Mutum Zico
dc.date.accessioned 2024-05-25T12:18:45Z
dc.date.available 2024-05-25T12:18:45Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Sivalingam, S. M.; Govindaraj, V.] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India; [Kumar, Pushpendra] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Nicosia, Turkiye; [Kumar, Pushpendra] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Qahiti, Raed Ali; Hamali, Waleed; Meetei, Mutum Zico] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabia en_US
dc.description S M, SIVALINGAM/0000-0003-0818-9007; Mutum, Zico/0000-0002-9168-5126; Kumar, Pushpendra/0000-0002-7755-2837 en_US
dc.description.abstract This study developed and examined a new operational matrix approach utilizing the Vieta-Fibonacci polynomial for the numerical solution of generalized Caputo -type differential equations with fractal -fractional terms. Based on the proposed approach, the fractal -fractional differential equations with generalized Caputo -type derivatives were reduced into a system of algebraic equations, which was further solved to obtain the unknown solution. The convergence and error bounds are theoretically calculated. The results are quantitatively confirmed in various cases. To demonstrate the correctness and computational efficacy of this proposed technique, it is compared to other well-known methods. en_US
dc.description.sponsorship Ministry of Education in Saudi Arabia, (ISP-2024) en_US
dc.description.sponsorship Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia [ISP-2024] en_US
dc.description.sponsorship The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project number ISP-2024. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.asej.2024.102678
dc.identifier.issn 2090-4479
dc.identifier.issn 2090-4495
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85185597831
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.asej.2024.102678
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:001223392600001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.ispartof Ain Shams Engineering Journal en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Fractal-fractional derivatives en_US
dc.subject Vieta-Fibonacci polynomials en_US
dc.subject Operational matrix en_US
dc.subject Convergence en_US
dc.subject Error bound en_US
dc.title An operational matrix approach with Vieta-Fibonacci polynomial for solving generalized Caputo fractal-fractional differential equations en_US
dc.type Article en_US
dc.wos.citedbyCount 3

Files