An operational matrix approach with Vieta-Fibonacci polynomial for solving generalized Caputo fractal-fractional differential equations

dc.authoridS M, SIVALINGAM/0000-0003-0818-9007
dc.authoridMutum, Zico/0000-0002-9168-5126
dc.authoridKumar, Pushpendra/0000-0002-7755-2837
dc.authorscopusid58001936300
dc.authorscopusid57217132593
dc.authorscopusid55363702400
dc.authorscopusid57291881500
dc.authorscopusid57444362300
dc.authorscopusid55248327700
dc.authorwosidKumar, Pushpendra/AAA-1223-2021
dc.authorwosidmeetei, zico/AAP-1763-2020
dc.authorwosidHamali, Waleed/GNM-6008-2022
dc.authorwosidS M, SIVALINGAM/HOH-3172-2023
dc.contributor.authorSivalingam, S. M.
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorGovindaraj, V.
dc.contributor.authorQahiti, Raed Ali
dc.contributor.authorHamali, Waleed
dc.contributor.authorMeetei, Mutum Zico
dc.date.accessioned2024-05-25T12:18:45Z
dc.date.available2024-05-25T12:18:45Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Sivalingam, S. M.; Govindaraj, V.] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India; [Kumar, Pushpendra] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Nicosia, Turkiye; [Kumar, Pushpendra] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Qahiti, Raed Ali; Hamali, Waleed; Meetei, Mutum Zico] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabiaen_US
dc.descriptionS M, SIVALINGAM/0000-0003-0818-9007; Mutum, Zico/0000-0002-9168-5126; Kumar, Pushpendra/0000-0002-7755-2837en_US
dc.description.abstractThis study developed and examined a new operational matrix approach utilizing the Vieta-Fibonacci polynomial for the numerical solution of generalized Caputo -type differential equations with fractal -fractional terms. Based on the proposed approach, the fractal -fractional differential equations with generalized Caputo -type derivatives were reduced into a system of algebraic equations, which was further solved to obtain the unknown solution. The convergence and error bounds are theoretically calculated. The results are quantitatively confirmed in various cases. To demonstrate the correctness and computational efficacy of this proposed technique, it is compared to other well-known methods.en_US
dc.description.sponsorshipMinistry of Education in Saudi Arabia, (ISP-2024)en_US
dc.description.sponsorshipDeputyship for Research and Innovation, Ministry of Education in Saudi Arabia [ISP-2024]en_US
dc.description.sponsorshipThe authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project number ISP-2024.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation1
dc.identifier.doi10.1016/j.asej.2024.102678
dc.identifier.issn2090-4479
dc.identifier.issn2090-4495
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85185597831
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.asej.2024.102678
dc.identifier.volume15en_US
dc.identifier.wosWOS:001223392600001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.ispartofAin Shams Engineering Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractal-fractional derivativesen_US
dc.subjectVieta-Fibonacci polynomialsen_US
dc.subjectOperational matrixen_US
dc.subjectConvergenceen_US
dc.subjectError bounden_US
dc.titleAn operational matrix approach with Vieta-Fibonacci polynomial for solving generalized Caputo fractal-fractional differential equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files