Understanding walking behaviour during COVID-19: Binary Logit and ANN approach

dc.authoridGunay, Gurkan/0000-0003-0597-1511
dc.authoridDundar, Selim/0000-0003-4433-1998
dc.authorscopusid57189523159
dc.authorscopusid55539064100
dc.authorwosidGunay, Gurkan/AAH-1462-2019
dc.authorwosidDündar, Selim/AAE-5613-2021
dc.contributor.authorDündar, Selim
dc.contributor.authorDundar, Selim
dc.contributor.otherİnşaat Mühendisliği / Civil Engineering
dc.date.accessioned2024-12-15T15:40:45Z
dc.date.available2024-12-15T15:40:45Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Gunay, Gurkan] Istanbul Bilgi Univ, Dept Civil Engn, Istanbul, Turkiye; [Dundar, Selim] Istanbul Okan Univ, Dept Civil Engn, Istanbul, Turkiyeen_US
dc.descriptionGunay, Gurkan/0000-0003-0597-1511; Dundar, Selim/0000-0003-4433-1998en_US
dc.description.abstractThe COVID-19 pandemic had severe impacts on society. It negatively affected many sectors, and transportation is one of those. Naturally, the walking trip behavior of individuals was also altered. This study aims to investigate the changes in walking trips of individuals with two models: Binary Logit (BL) and Artificial Neural Networks (ANN). An online survey was conducted with 387 individuals. BL model investigated if respondents' walking trips would increase during and after the pandemic. On the other hand, ANN models were developed to determine the significant factors in changes in walking behavior. Results indicate that ANN models capture more factors than BL models. Demographics and attitudes towards public transportation, taxi, and walking trips during the pandemic are found to be effective in walking behavior changes. Policies can be made to increase public transit ridership, and infrastructure for walking can be improved. Future research suggestions are given.en_US
dc.description.sponsorshipEuropean Union's H2020 research and innovation program under the RECIPROCITY Project [101006576]en_US
dc.description.sponsorshipThis study has been prepared with the support of the European Union's H2020 research and innovation program under the RECIPROCITY Project (Grant NO 101006576).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1680/jmuen.23.00039
dc.identifier.issn0965-0903
dc.identifier.issn1751-7699
dc.identifier.scopus2-s2.0-85209636174
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1680/jmuen.23.00039
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7512
dc.identifier.wosWOS:001354472000001
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCOVID-19en_US
dc.subjectneural networksen_US
dc.subjectbinary logiten_US
dc.subjecttransport planningen_US
dc.subjecttransport managementen_US
dc.titleUnderstanding walking behaviour during COVID-19: Binary Logit and ANN approachen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication52fffa12-457c-4662-8e87-9cd26b575049
relation.isAuthorOfPublication.latestForDiscovery52fffa12-457c-4662-8e87-9cd26b575049
relation.isOrgUnitOfPublication43a00f20-ca47-4515-b3a3-db2c86320ff6
relation.isOrgUnitOfPublication.latestForDiscovery43a00f20-ca47-4515-b3a3-db2c86320ff6

Files