The effect of the initial temperature, pressure, and shape of carbon nanopores on the separation process of SiO2 molecules from water vapor by molecular dynamics simulation

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Today, with the advancement of science in nanotechnology, it is possible to remove dust nanostructures from the air breathed by humans or other fluids. In the present study, the separation of SiO2 molecules from H2O vapor is studied using molecular dynamics (MD) simulation. This research studied the effect of initial temperature, nanopore geometry, and initial pressure on the separation of SiO2 molecules. The obtained results show that by increasing the temperature to 500 K, the maximum velocity (Max-Vel) of the samples reached 2.47 Å/fs. Regarding the increasing velocity of particles, more particles pass via the nanopores. Moreover, the shape of the nanopore could affect the number of passing particles. The results show that in the samples with a cylindrical nanopore, 20 and 40% of SiO2 molecules, and with the sphere cavity, about 32 and 38% of SiO2 particles passed in the simulated structure. So, it can be concluded that the performance of carbon nanosheets with a cylindrical pore and 450 K was more optimal. Also, the results show that an increase in initial pressure leads to a decrease in the passage of SiO2 particles. The results reveal that about 14 and 54% of Silica particles passed via the carbon membrane with increasing pressure. Therefore, for use in industry, in terms of separating dust particles, in addition to applying an EF, temperature, nanopore geometry, and initial pressure should be controlled. © 2023 Elsevier Ltd

Description

Keywords

Molecular dynamics simulation, Nanopores, Separation, SiO<sub>2</sub> molecules

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q1

Scopus Q

Q1

Source

Chemosphere

Volume

349

Issue

Start Page

End Page