Prediction and extensive analysis of MWCNT-MgO/oil SAE 50 hybrid nano-lubricant rheology utilizing machine learning and genetic algorithms to find ideal attributes

dc.authorid Baghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authorscopusid 57338920800
dc.authorscopusid 56388625300
dc.authorscopusid 22136195900
dc.authorscopusid 23028598900
dc.authorscopusid 57449950600
dc.contributor.author Baghoolizadeh, Mohammadreza
dc.contributor.author Pirmoradian, Mostafa
dc.contributor.author Sajadi, S. Mohammad
dc.contributor.author Salahshour, Soheil
dc.contributor.author Baghaei, Sh.
dc.date.accessioned 2024-05-25T11:37:29Z
dc.date.available 2024-05-25T11:37:29Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Pirmoradian, Mostafa; Baghaei, Sh.] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon en_US
dc.description Baghoolizadeh, Mohammadreza/0000-0002-3703-0866 en_US
dc.description.abstract Genetic algorithms and machine learning methods can accurately anticipate hybrid nanofluids' complicated rheology. Scientists and engineers can understand hybrid materials by using genetic algorithms to optimize and machine learning to discover complicated relationships between input variables and rheological responses. As a continuation of the author's previous research on the rheological properties of a nano-lubricant based on engine oil and hybrid nanoparticles, this study uses machine learning and genetic algorithms to theoretically assess the dynamic viscosity of the MWCNT-MgO/oil SAE 50 hybrid nanofluid and identify optimal properties. MLR, DTree, Ridge, PLR, SVM, Lasso, ECR, GPR, and MPR are used for regression analysis. Best multi-objective issue solutions are represented by the Pareto front. The NSGA-II algorithm determines the Pareto front. The MPR and NSGA-II algorithms provide a Pareto front with the most precise optimal spot boundaries. The Weighted Sum Method (WSM) simplifies multi-objective problems into single-objective problems, making optimal solutions easier to find. The results show that the maximum margin of deviation for mu nf and tau is - 2.5615 and - 5.239, respectively. According to the Taylor chart, the best mu nf mode for R, RMSE and STD is equal to 0.9983, 7.6639, 130.0056. Also, these values for tau are equal to 0.9996, 15.4515, and 516.0219. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.triboint.2024.109582
dc.identifier.issn 0301-679X
dc.identifier.issn 1879-2464
dc.identifier.scopus 2-s2.0-85189760812
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.triboint.2024.109582
dc.identifier.uri https://hdl.handle.net/20.500.14517/1174
dc.identifier.volume 195 en_US
dc.identifier.wos WOS:001217634500001
dc.identifier.wosquality Q1
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 7
dc.subject Hybrid nanofluid en_US
dc.subject Rheology en_US
dc.subject Machine learning en_US
dc.subject Genetic algorithms en_US
dc.title Prediction and extensive analysis of MWCNT-MgO/oil SAE 50 hybrid nano-lubricant rheology utilizing machine learning and genetic algorithms to find ideal attributes en_US
dc.type Article en_US
dc.wos.citedbyCount 5

Files