A molecular dynamics study of the external heat flux effect on the atomic and thermal behavior of the silica aerogel/ paraffin /CuO nanostructure
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-elsevier Science Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Investigating the nanostructure's atomic and thermal properties (TP) might help enhance energy conversion and storage technologies. This is particularly important when considering phase change materials (PCM) and their use in thermal energy storage systems. However, understanding the behavior of nanostructure's atomic and thermal components in response to temperature (Temp) changes is critical, as is improving its heat transfer capacities for a wide range of applications by examining the effect of external heat flux (EHF). As a result, the major goal of this research was to determine the effect of EHF on the atomic and TP of silica aerogel (SA)/ paraffin/CuO nanostructures. This investigation was done using molecular dynamics (MD) simulation and LAMMPS software. To achieve this, a study was undertaken into the effect of EHF of different magnitudes (0.01, 0.02, 0.03, and 0.05 W/m2) on the maximum (Max) density (Dens), velocity (Vel), and Temp, as well as HF, thermal conductivity (TC), and charging and discharging time. The results show that when the EHF increased to 0.05 W/m2, the Max Dens value decreased to 0.0754 atoms per square centimeter. Furthermore, the Max Temp and Vel increased to 1018.82 K and 0.0139/fs, respectively. Increased external heat discharge improved the thermal effectiveness of simulated construction. Increasing the EHF raised the TC and HF to 95.93 W/m2 and 1.93 W/mK, respectively. Finally, the results of this simulation are expected to improve understanding of nanostructure TP and their potential applications in improved energy conversion and storage technologies.
Description
Keywords
Paraffin, Silica aerogel, External heat flux, Molecular dynamics simulation
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Q1
Scopus Q
Q1
Source
Volume
158