Electricity price estimation using deep learning approaches: An empirical study on Turkish markets in normal and Covid-19 periods

dc.authorid Kaya, Mustafa/0000-0002-3054-3108
dc.authorscopusid 55417965400
dc.authorscopusid 7003474008
dc.authorscopusid 55935271400
dc.authorwosid KARAN, MEHMET BAHA/I-8458-2013
dc.contributor.author Kaya, Mustafa
dc.contributor.author Karan, Mehmet Baha
dc.contributor.author Telatar, Erdinc
dc.date.accessioned 2024-05-25T11:37:54Z
dc.date.available 2024-05-25T11:37:54Z
dc.date.issued 2023
dc.department Okan University en_US
dc.department-temp [Kaya, Mustafa; Karan, Mehmet Baha] Hacettepe Univ, Dept Business Adm, TR-06800 Ankara, Turkiye; [Telatar, Erdinc] Istanbul Okan Univ, Dept Econ & Finance, TR-34959 Istanbul, Turkiye en_US
dc.description Kaya, Mustafa/0000-0002-3054-3108 en_US
dc.description.abstract This study aims to estimate the prices in the next 24 h with deep learning methods in the Turkish electricity market. The model is based on hourly data for the period 2017-2021 using electricity prices. The model's Root Mean Square Error (RMSE) value is 3.14, and the explanatory power R2 is 0.94. Since this model also considers the subgroups in the database, it can make price predictions for the pandemic period. To test the robustness and consistency of the model, twelve RNN-based models were re-estimated with the same data set. Although all models successfully predict the prices, The TEDSE Model performs better than the others. This study will be especially beneficial to electricity market players and policymakers. In further studies, the TEDSE model can be used for price prediction in intraday energy markets. This study's most important contribution is methodology innovation, using the Transformer Encoder-Decoder with Self-Attention (TEDSE) model for the first time to estimate electricity prices. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1016/j.eswa.2023.120026
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.scopus 2-s2.0-85151734609
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.eswa.2023.120026
dc.identifier.uri https://hdl.handle.net/20.500.14517/1229
dc.identifier.volume 224 en_US
dc.identifier.wos WOS:000980858900001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 12
dc.subject Deep learning en_US
dc.subject Electricity price prediction en_US
dc.subject Transformer encoder-decoder with self-atten-tion en_US
dc.subject Turkish electricity market en_US
dc.title Electricity price estimation using deep learning approaches: An empirical study on Turkish markets in normal and Covid-19 periods en_US
dc.type Article en_US
dc.wos.citedbyCount 11

Files