Electricity price estimation using deep learning approaches: An empirical study on Turkish markets in normal and Covid-19 periods

dc.authoridKaya, Mustafa/0000-0002-3054-3108
dc.authorscopusid55417965400
dc.authorscopusid7003474008
dc.authorscopusid55935271400
dc.authorwosidKARAN, MEHMET BAHA/I-8458-2013
dc.contributor.authorKaya, Mustafa
dc.contributor.authorKaran, Mehmet Baha
dc.contributor.authorTelatar, Erdinc
dc.date.accessioned2024-05-25T11:37:54Z
dc.date.available2024-05-25T11:37:54Z
dc.date.issued2023
dc.departmentOkan Universityen_US
dc.department-temp[Kaya, Mustafa; Karan, Mehmet Baha] Hacettepe Univ, Dept Business Adm, TR-06800 Ankara, Turkiye; [Telatar, Erdinc] Istanbul Okan Univ, Dept Econ & Finance, TR-34959 Istanbul, Turkiyeen_US
dc.descriptionKaya, Mustafa/0000-0002-3054-3108en_US
dc.description.abstractThis study aims to estimate the prices in the next 24 h with deep learning methods in the Turkish electricity market. The model is based on hourly data for the period 2017-2021 using electricity prices. The model's Root Mean Square Error (RMSE) value is 3.14, and the explanatory power R2 is 0.94. Since this model also considers the subgroups in the database, it can make price predictions for the pandemic period. To test the robustness and consistency of the model, twelve RNN-based models were re-estimated with the same data set. Although all models successfully predict the prices, The TEDSE Model performs better than the others. This study will be especially beneficial to electricity market players and policymakers. In further studies, the TEDSE model can be used for price prediction in intraday energy markets. This study's most important contribution is methodology innovation, using the Transformer Encoder-Decoder with Self-Attention (TEDSE) model for the first time to estimate electricity prices.en_US
dc.identifier.citation3
dc.identifier.doi10.1016/j.eswa.2023.120026
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-85151734609
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2023.120026
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1229
dc.identifier.volume224en_US
dc.identifier.wosWOS:000980858900001
dc.identifier.wosqualityQ1
dc.institutionauthorTelatar, Mustafa Erdinç
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectElectricity price predictionen_US
dc.subjectTransformer encoder-decoder with self-atten-tionen_US
dc.subjectTurkish electricity marketen_US
dc.titleElectricity price estimation using deep learning approaches: An empirical study on Turkish markets in normal and Covid-19 periodsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3dbae2db-082a-48f9-8d24-bab8b6a6000a
relation.isAuthorOfPublication.latestForDiscovery3dbae2db-082a-48f9-8d24-bab8b6a6000a

Files