The effect of initial temperature and oxygen ratio on air-methane catalytic combustion in a helical microchannel using molecular dynamics approach

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

In industrial environments where combustion (Com.) is widely carried out, such as steam power plants, gas turbines, etc., the most common way to express the amount of oxygen consumption is its excess percentage in addition to the stoichiometric ratio, and the nearness of a catalyst causes combustion to happen at a high ratio. There are different influential factors in catalytic combustion, such as initial temperature (IT). The current study uses the molecular dynamics (MD) method to examine how the IT and oxygen ratio affect air -methane catalytic combustion in a heli- cal microchannel. The LAMMPS package was used to conduct this investigation. This study exam- ines how simulated structures function during burning in excess oxygen (EO) and oxygen defi- ciency (OD). Furthermore, palladium was used as a catalyst with an atomic ratio of 4 %. The find- ings show that raising the IT may enhance its atomic behavior (AB) and thermal performance (TP). The maximum velocity (MV) and maximum temperature (MT) increased from 0.26 angstrom/ps and 1617 K to 0.45 angstrom/ps and 1891 K in EO as IT increased from 300 to 700 K. By accelerating the particle velocity, it is anticipated that the catalytic combustion process would proceed more quickly. As a result, after increasing the IT to 700 K, the heat flux (HF), thermal conductivity (TC), and combustion efficiency (CE) increase to 2101 W/m2, 1.23 W/m. K, and 93 %, respec- tively. On the other hand, the results show that increasing IT affects combustion performance in the presence of OD. In the presence of OD, the MV and CE converge to 0.38 angstrom/ps and 94 % at 700 K. Therefore. It can be concluded that the atomic ratio of oxygen and the IT can significantly affect combustion process.

Description

AL-Rubaye, Ameer H./0000-0002-0161-0615; Basem, Ali/0000-0002-6802-9315;

Keywords

MD method, Catalytic combustion, Initial temperature

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q1

Scopus Q

Q1

Source

Volume

54

Issue

Start Page

End Page