Hardy type unique continuation properties for abstract Schrodinger equations and applications

dc.authorscopusid 6508234400
dc.contributor.author Shakhmurov, Veli
dc.date.accessioned 2024-05-25T11:41:11Z
dc.date.available 2024-05-25T11:41:11Z
dc.date.issued 2019
dc.department Okan University en_US
dc.department-temp [Shakhmurov, Veli] Okan Univ, Dept Mech Engn, TR-34959 Istanbul, Turkey; [Shakhmurov, Veli] Azerbaijan Natl Acad Sci, Inst Math & Mech, F Agaev 9, AZ-1141 Baku, Azerbaijan en_US
dc.description.abstract In this paper, Hardy's uncertainty principle and unique continuation properties of Schrodinger equations with operator potentials in Hilbert space-valued L-2 classes are obtained. Since the Hilbert space H and linear operators are arbitrary, by choosing the appropriate spaces and operators we obtain numerous classes of Schrodinger type equations and its finite and infinite many systems which occur in a wide variety of physical systems. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.14232/ejqtde.2019.1.97
dc.identifier.endpage 27 en_US
dc.identifier.issn 1417-3875
dc.identifier.issue 97 en_US
dc.identifier.scopus 2-s2.0-85077341065
dc.identifier.scopusquality Q3
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.14232/ejqtde.2019.1.97
dc.identifier.uri https://hdl.handle.net/20.500.14517/1492
dc.identifier.wos WOS:000505723200001
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Univ Szeged, Bolyai institute en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Schrodinger equations en_US
dc.subject positive operators en_US
dc.subject groups of operators en_US
dc.subject unique continuation en_US
dc.subject Hardy's uncertainty principle en_US
dc.title Hardy type unique continuation properties for abstract Schrodinger equations and applications en_US
dc.type Article en_US
dc.wos.citedbyCount 1

Files