Hardy type unique continuation properties for abstract Schrodinger equations and applications
dc.authorscopusid | 6508234400 | |
dc.contributor.author | Shakhmurov, Veli | |
dc.date.accessioned | 2024-05-25T11:41:11Z | |
dc.date.available | 2024-05-25T11:41:11Z | |
dc.date.issued | 2019 | |
dc.department | Okan University | en_US |
dc.department-temp | [Shakhmurov, Veli] Okan Univ, Dept Mech Engn, TR-34959 Istanbul, Turkey; [Shakhmurov, Veli] Azerbaijan Natl Acad Sci, Inst Math & Mech, F Agaev 9, AZ-1141 Baku, Azerbaijan | en_US |
dc.description.abstract | In this paper, Hardy's uncertainty principle and unique continuation properties of Schrodinger equations with operator potentials in Hilbert space-valued L-2 classes are obtained. Since the Hilbert space H and linear operators are arbitrary, by choosing the appropriate spaces and operators we obtain numerous classes of Schrodinger type equations and its finite and infinite many systems which occur in a wide variety of physical systems. | en_US |
dc.identifier.citationcount | 1 | |
dc.identifier.doi | 10.14232/ejqtde.2019.1.97 | |
dc.identifier.endpage | 27 | en_US |
dc.identifier.issn | 1417-3875 | |
dc.identifier.issue | 97 | en_US |
dc.identifier.scopus | 2-s2.0-85077341065 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.14232/ejqtde.2019.1.97 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1492 | |
dc.identifier.wos | WOS:000505723200001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | |
dc.publisher | Univ Szeged, Bolyai institute | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | Schrodinger equations | en_US |
dc.subject | positive operators | en_US |
dc.subject | groups of operators | en_US |
dc.subject | unique continuation | en_US |
dc.subject | Hardy's uncertainty principle | en_US |
dc.title | Hardy type unique continuation properties for abstract Schrodinger equations and applications | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 1 |