MAXIMAL REGULAR CONVOLUTION-DIFFERENTIAL EQUATIONS IN WEIGHTED BESOV SPACES

dc.authorwosidShakhmurov, Veli/AAG-8871-2019
dc.contributor.authorShakhmurov, Veli
dc.contributor.authorMusaev, Hummet
dc.date.accessioned2024-10-15T20:21:42Z
dc.date.available2024-10-15T20:21:42Z
dc.date.issued2017
dc.departmentOkan Universityen_US
dc.department-temp[Shakhmurov, Veli] Okan Univ, Dept Mech Engn, TR-34959 Istanbul, Turkey; [Musaev, Hummet] Baku State Univ, Inst Appl Math, Baku, Azerbaijanen_US
dc.description.abstractBy using Fourier multiplier theorems, the maximal regularity properties of abstract convolution differential equations in weighted Besov spaces are investigated. It is shown that the corresponding convolution differential operators are positive and generate analytic semi groups in abstract Besov spaces. Then, the well-posedness of the Cauchy problem for parabolic convolution operator equation is established. Moreover, these results are used to establish maximal regularity properties for system of integro-differential equations of finite and infinite orders.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation12
dc.identifier.doi[WOS-DOI-BELIRLENECEK-90]
dc.identifier.endpage200en_US
dc.identifier.issn1683-3511
dc.identifier.issn1683-6154
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage190en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6663
dc.identifier.volume16en_US
dc.identifier.wosWOS:000404095400008
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherMinistry Communications & High Technologies Republic Azerbaijanen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPositive Operatorsen_US
dc.subjectVector Valued Besov Spacesen_US
dc.subjectSobolev-Linos Type Spacesen_US
dc.subjectOperator-Valued Multipliersen_US
dc.subjectConvolution Equationsen_US
dc.titleMAXIMAL REGULAR CONVOLUTION-DIFFERENTIAL EQUATIONS IN WEIGHTED BESOV SPACESen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files