A neural network computational procedure for the novel designed singular fifth order nonlinear system of multi-pantograph differential equations

dc.authoridBhat, Shahid Ahmad/0000-0002-6791-5913
dc.authorscopusid58154611900
dc.authorscopusid57204593183
dc.authorscopusid56184182600
dc.authorscopusid55405373600
dc.authorscopusid56506688100
dc.authorscopusid56704936300
dc.authorscopusid56704936300
dc.authorwosidBhat, Shahid/GVU-1503-2022
dc.contributor.authorBhat, Shahid Ahmad
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorBabatin, M. M.
dc.contributor.authorHashem, Atef F.
dc.contributor.authorAbdelkawy, M. A.
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-09-11T07:40:55Z
dc.date.available2024-09-11T07:40:55Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Bhat, Shahid Ahmad] LUT Univ, LUT Business Sch, POB 20, FIN-53851 Lappeenranta, Finland; [Khan, Sundas Naqeeb] Silesian Tech Univ, Dept Graph Comp Vis & Digital Syst, Gliwice, Poland; [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Babatin, M. M.; Hashem, Atef F.; Abdelkawy, M. A.] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia; [Hashem, Atef F.; Abdelkawy, M. A.] Beni Suef Univ, Fac Sci, Dept Math & Informat Sci, Bani Suwayf, Egypt; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionBhat, Shahid Ahmad/0000-0002-6791-5913en_US
dc.description.abstractThe current investigations present the numerical solutions of the novel singular nonlinear fifth-order (SNFO) system of multi-pantograph differential model (SMPDM), i.e., SNFO-SMPDM. The novel SNFO-SMPDM is obtained using the sense of the second kind of typical Emden-Fowler and prediction differential models. The features of shape factor, pantograph along with singular points are provided for all four obtained classes of the SNFO-SMPDM. The extensive use of the singular models is observed in the engineering and mathematical systems, e.g., inverse systems and viscoelasticity or creep systems. For the correctness of the proposed novel SNFO-SMPDM, one case of each class is numerically handled by applying supervised neural networks (SNNs) along with the optimization of Levenberg-Marquardt backpropagation scheme (LMBS), i.e., SNNs-LMBS. A dataset using the traditional variational iteration scheme is designed to compare the proposed results of each case of SNFO-SMPDM. The obtained approximate solutions of each class using the novel SNFO-SMPDM are presented based on the training (80 %), authentication (10 %) and testing (10 %) measures to evaluate the mean square error. Fifteen numbers of neurons, and sigmoid activation function are used in this SNN process. To authenticate the competence, and precision of SNFO-SMPDM, the numerical simulations are accessible by applying the relative measures of regression, error histogram plots, and correlation.en_US
dc.description.sponsorshipDeanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-RPP2023124]en_US
dc.description.sponsorship<BOLD>Funding</BOLD> This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (Grant No. IMSIU-RPP2023124) .en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.knosys.2024.112314
dc.identifier.issn0950-7051
dc.identifier.issn1872-7409
dc.identifier.scopus2-s2.0-85200998546
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.knosys.2024.112314
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6219
dc.identifier.volume301en_US
dc.identifier.wosWOS:001295405300001
dc.identifier.wosqualityQ1
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFifth orderen_US
dc.subjectPantograph modelen_US
dc.subjectNonlinearen_US
dc.subjectSingular systemen_US
dc.subjectLevenberg-Marquardt Backpropagationen_US
dc.subjectschemeen_US
dc.titleA neural network computational procedure for the novel designed singular fifth order nonlinear system of multi-pantograph differential equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files