A neural network computational procedure for the novel designed singular fifth order nonlinear system of multi-pantograph differential equations
dc.authorid | Bhat, Shahid Ahmad/0000-0002-6791-5913 | |
dc.authorscopusid | 58154611900 | |
dc.authorscopusid | 57204593183 | |
dc.authorscopusid | 56184182600 | |
dc.authorscopusid | 55405373600 | |
dc.authorscopusid | 56506688100 | |
dc.authorscopusid | 56704936300 | |
dc.authorscopusid | 56704936300 | |
dc.authorwosid | Bhat, Shahid/GVU-1503-2022 | |
dc.contributor.author | Bhat, Shahid Ahmad | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Sabir, Zulqurnain | |
dc.contributor.author | Babatin, M. M. | |
dc.contributor.author | Hashem, Atef F. | |
dc.contributor.author | Abdelkawy, M. A. | |
dc.contributor.author | Salahshour, Soheil | |
dc.date.accessioned | 2024-09-11T07:40:55Z | |
dc.date.available | 2024-09-11T07:40:55Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Bhat, Shahid Ahmad] LUT Univ, LUT Business Sch, POB 20, FIN-53851 Lappeenranta, Finland; [Khan, Sundas Naqeeb] Silesian Tech Univ, Dept Graph Comp Vis & Digital Syst, Gliwice, Poland; [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Babatin, M. M.; Hashem, Atef F.; Abdelkawy, M. A.] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia; [Hashem, Atef F.; Abdelkawy, M. A.] Beni Suef Univ, Fac Sci, Dept Math & Informat Sci, Bani Suwayf, Egypt; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description | Bhat, Shahid Ahmad/0000-0002-6791-5913 | en_US |
dc.description.abstract | The current investigations present the numerical solutions of the novel singular nonlinear fifth-order (SNFO) system of multi-pantograph differential model (SMPDM), i.e., SNFO-SMPDM. The novel SNFO-SMPDM is obtained using the sense of the second kind of typical Emden-Fowler and prediction differential models. The features of shape factor, pantograph along with singular points are provided for all four obtained classes of the SNFO-SMPDM. The extensive use of the singular models is observed in the engineering and mathematical systems, e.g., inverse systems and viscoelasticity or creep systems. For the correctness of the proposed novel SNFO-SMPDM, one case of each class is numerically handled by applying supervised neural networks (SNNs) along with the optimization of Levenberg-Marquardt backpropagation scheme (LMBS), i.e., SNNs-LMBS. A dataset using the traditional variational iteration scheme is designed to compare the proposed results of each case of SNFO-SMPDM. The obtained approximate solutions of each class using the novel SNFO-SMPDM are presented based on the training (80 %), authentication (10 %) and testing (10 %) measures to evaluate the mean square error. Fifteen numbers of neurons, and sigmoid activation function are used in this SNN process. To authenticate the competence, and precision of SNFO-SMPDM, the numerical simulations are accessible by applying the relative measures of regression, error histogram plots, and correlation. | en_US |
dc.description.sponsorship | Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-RPP2023124] | en_US |
dc.description.sponsorship | <BOLD>Funding</BOLD> This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (Grant No. IMSIU-RPP2023124) . | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.knosys.2024.112314 | |
dc.identifier.issn | 0950-7051 | |
dc.identifier.issn | 1872-7409 | |
dc.identifier.scopus | 2-s2.0-85200998546 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.knosys.2024.112314 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6219 | |
dc.identifier.volume | 301 | en_US |
dc.identifier.wos | WOS:001295405300001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fifth order | en_US |
dc.subject | Pantograph model | en_US |
dc.subject | Nonlinear | en_US |
dc.subject | Singular system | en_US |
dc.subject | Levenberg-Marquardt Backpropagation | en_US |
dc.subject | scheme | en_US |
dc.title | A neural network computational procedure for the novel designed singular fifth order nonlinear system of multi-pantograph differential equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |