A Fractional-Order Improved Fitzhugh-Nagumo Neuron Model
dc.authorid | Kumar, Pushpendra/0000-0002-7755-2837 | |
dc.authorscopusid | 57217132593 | |
dc.authorscopusid | 16303495600 | |
dc.contributor.author | Kumar, Pushpendra | |
dc.contributor.author | Erturk, Vedat Suat | |
dc.date.accessioned | 2025-02-17T18:49:18Z | |
dc.date.available | 2025-02-17T18:49:18Z | |
dc.date.issued | 2025 | |
dc.department | Okan University | en_US |
dc.department-temp | [Kumar, Pushpendra] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Kumar, Pushpendra] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin, Turkiye; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Samsun, Turkiye | en_US |
dc.description | Kumar, Pushpendra/0000-0002-7755-2837 | en_US |
dc.description.abstract | We propose a fractional-order improved FitzHugh-Nagumo (FHN) neuron model in terms of a generalized Caputo fractional derivative. Following the existence of a unique solution for the proposed model, we derive the numerical solution using a recently proposed L1 predictor-corrector method. The given method is based on the L1-type discretization algorithm and the spline interpolation scheme. We perform the error and stability analyses for the given method. We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns, chaotic patterns, and quasi-periodic patterns. The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics, which are inherent to many biological systems. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1088/1674-1056/ad8a46 | |
dc.identifier.issn | 1674-1056 | |
dc.identifier.issn | 2058-3834 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85214316993 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1088/1674-1056/ad8a46 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/7674 | |
dc.identifier.volume | 34 | en_US |
dc.identifier.wos | WOS:001390636900001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Iop Publishing Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fitzhugh-Nagumo Neuron Model | en_US |
dc.subject | Generalized Caputo Fractional Derivative | en_US |
dc.subject | L1 Predictor-Corrector Method | en_US |
dc.subject | Stability | en_US |
dc.subject | Error Estimation | en_US |
dc.subject | 87.19.Lj | en_US |
dc.subject | 45.10.Hj | en_US |
dc.subject | 82.40.Bj | en_US |
dc.title | A Fractional-Order Improved Fitzhugh-Nagumo Neuron Model | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |