Thomas precession and Thomas-Wigner rotation: Correct solutions and their implications

dc.authoridarik, metin/0000-0001-9512-8581
dc.authoridYarman, Tolga/0000-0003-3209-2264
dc.authorscopusid7004016669
dc.authorscopusid55893162300
dc.authorscopusid6602787345
dc.authorscopusid7005444397
dc.authorwosidarik, metin/T-4193-2019
dc.authorwosidYarman, Tolga/Q-9753-2019
dc.contributor.authorYarman, Nuh Tolga
dc.contributor.authorMissevitch, Oleg
dc.contributor.authorYarman, Tolga
dc.contributor.authorArik, Metin
dc.contributor.otherEnerji Sistemleri Mühendisliği / Energy Systems Engineering
dc.date.accessioned2024-05-25T11:40:05Z
dc.date.available2024-05-25T11:40:05Z
dc.date.issued2020
dc.departmentOkan Universityen_US
dc.department-temp[Kholmetskii, Alexander] Belarusian State Univ, Dept Phys, Nezavisimosti Ave 4, Minsk 220030, BELARUS; [Missevitch, Oleg] Belarusian State Univ, Res Inst Nucl Problems, Bobrujskaya Str 11, Minsk 220030, BELARUS; [Yarman, Tolga] Okan Univ Akfirat, Istanbul, Turkey; [Arik, Metin] Bogazici Univ Istanbul, Istanbul, Turkeyen_US
dc.descriptionarik, metin/0000-0001-9512-8581; Yarman, Tolga/0000-0003-3209-2264en_US
dc.description.abstractWe address the Thomas precession for the hydrogen-like atom and point out that in the derivation of this effect in the semi-classical approach, two different successions of rotation-free Lorentz transformations between the laboratory frame K and the proper electron's frames, K-e(t) and K-e(t + dt), separated by the time interval dt, were used by different authors. We further show that the succession of Lorentz transformations K -> K-e(t) -> K-e(t + dt) leads to relativistically non-adequate results in the frame Ke(t) with respect to the rotational frequency of the electron spin, and thus an alternative succession of transformations K -> K-e(t), K -> K-e( t + dt) must be applied. From the physical viewpoint this means the validity of the introduced "tracking rule", when the rotation-free Lorentz transformation, being realized between the frame of observation K and the frame K(t) co-moving with a tracking object at the time moment t, remains in force at any future time moments, too. We apply this rule to the moving macroscopic objects and analyze its implications with respect to the Thomas-Wigner rotation and its application to astrometry. Copyright (C) EPLA, 2020.en_US
dc.identifier.citation1
dc.identifier.doi10.1209/0295-5075/129/30006
dc.identifier.issn0295-5075
dc.identifier.issn1286-4854
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85084205194
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1209/0295-5075/129/30006
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1401
dc.identifier.volume129en_US
dc.identifier.wosWOS:000537696500006
dc.identifier.wosqualityQ3
dc.language.isoen
dc.publisherIop Publishing Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleThomas precession and Thomas-Wigner rotation: Correct solutions and their implicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isAuthorOfPublication.latestForDiscoverye8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isOrgUnitOfPublicatione2c8b290-2656-4ea1-8e8f-954383d6b397
relation.isOrgUnitOfPublication.latestForDiscoverye2c8b290-2656-4ea1-8e8f-954383d6b397

Files