Thomas precession and Thomas-Wigner rotation: Correct solutions and their implications

dc.authorid arik, metin/0000-0001-9512-8581
dc.authorid Yarman, Tolga/0000-0003-3209-2264
dc.authorscopusid 7004016669
dc.authorscopusid 55893162300
dc.authorscopusid 6602787345
dc.authorscopusid 7005444397
dc.authorwosid arik, metin/T-4193-2019
dc.authorwosid Yarman, Tolga/Q-9753-2019
dc.contributor.author Kholmetskii, Alexander
dc.contributor.author Missevitch, Oleg
dc.contributor.author Yarman, Tolga
dc.contributor.author Arik, Metin
dc.date.accessioned 2024-05-25T11:40:05Z
dc.date.available 2024-05-25T11:40:05Z
dc.date.issued 2020
dc.department Okan University en_US
dc.department-temp [Kholmetskii, Alexander] Belarusian State Univ, Dept Phys, Nezavisimosti Ave 4, Minsk 220030, BELARUS; [Missevitch, Oleg] Belarusian State Univ, Res Inst Nucl Problems, Bobrujskaya Str 11, Minsk 220030, BELARUS; [Yarman, Tolga] Okan Univ Akfirat, Istanbul, Turkey; [Arik, Metin] Bogazici Univ Istanbul, Istanbul, Turkey en_US
dc.description arik, metin/0000-0001-9512-8581; Yarman, Tolga/0000-0003-3209-2264 en_US
dc.description.abstract We address the Thomas precession for the hydrogen-like atom and point out that in the derivation of this effect in the semi-classical approach, two different successions of rotation-free Lorentz transformations between the laboratory frame K and the proper electron's frames, K-e(t) and K-e(t + dt), separated by the time interval dt, were used by different authors. We further show that the succession of Lorentz transformations K -> K-e(t) -> K-e(t + dt) leads to relativistically non-adequate results in the frame Ke(t) with respect to the rotational frequency of the electron spin, and thus an alternative succession of transformations K -> K-e(t), K -> K-e( t + dt) must be applied. From the physical viewpoint this means the validity of the introduced "tracking rule", when the rotation-free Lorentz transformation, being realized between the frame of observation K and the frame K(t) co-moving with a tracking object at the time moment t, remains in force at any future time moments, too. We apply this rule to the moving macroscopic objects and analyze its implications with respect to the Thomas-Wigner rotation and its application to astrometry. Copyright (C) EPLA, 2020. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1209/0295-5075/129/30006
dc.identifier.issn 0295-5075
dc.identifier.issn 1286-4854
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85084205194
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1209/0295-5075/129/30006
dc.identifier.uri https://hdl.handle.net/20.500.14517/1401
dc.identifier.volume 129 en_US
dc.identifier.wos WOS:000537696500006
dc.identifier.wosquality Q3
dc.language.iso en
dc.publisher Iop Publishing Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject [No Keyword Available] en_US
dc.title Thomas precession and Thomas-Wigner rotation: Correct solutions and their implications en_US
dc.type Article en_US
dc.wos.citedbyCount 2

Files