Obtaining an accurate prediction model for viscosity of a new nano-lubricant containing multi-walled carbon nanotube-titanium dioxide nanoparticles with oil SAE50
dc.authorid | A. Hamoodi, Karrar/0000-0002-5719-864X | |
dc.authorid | Li, Zhixiong/0000-0002-7265-0008 | |
dc.authorid | Eftekhari, SeyedAli/0000-0002-9730-4232 | |
dc.authorid | Jasim, Dheyaa Jumaah/0000-0001-7259-3392 | |
dc.authorscopusid | 58777209100 | |
dc.authorscopusid | 57219805679 | |
dc.authorscopusid | 22136195900 | |
dc.authorscopusid | 57474867200 | |
dc.authorscopusid | 57225906716 | |
dc.authorscopusid | 57222062476 | |
dc.authorscopusid | 16416765400 | |
dc.authorwosid | A. Hamoodi, Karrar/M-8021-2019 | |
dc.authorwosid | Li, Zhixiong/G-8418-2018 | |
dc.authorwosid | Eftekhari, SeyedAli/AAG-3342-2019 | |
dc.authorwosid | Jasim, Dheyaa Jumaah/GPS-5013-2022 | |
dc.contributor.author | Zhang, Yuelei | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Sajadi, S. Mohammad | |
dc.contributor.author | Li, Z. | |
dc.contributor.author | Jasim, Dheyaa J. | |
dc.contributor.author | Nasajpour-Esfahani, Navid | |
dc.contributor.author | Khabaz, Mohamad Khaje | |
dc.date.accessioned | 2024-05-25T11:28:25Z | |
dc.date.available | 2024-05-25T11:28:25Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Zhang, Yuelei] Wuchang Univ Technol, Sch Artificial Intelligence, Wuhan 430223, Hubei, Peoples R China; [Hammoodi, Karrar A.] Univ Warith Al Anbiyaa, Dept Air Conditioning & Refrigerat, Fac Engn, Karbala, Iraq; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Li, Z.] Donghai Lab, Zhoushan 316021, Peoples R China; [Li, Z.] Opole Univ Technol, Fac Mech Engn, PL-45758 Opole, Poland; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Nasajpour-Esfahani, Navid] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Eftekhari, S. A.; Khabaz, Mohamad Khaje] Islamic Azad Univ, Khomeinishahr Branch, Dept Mech Engn, Khomeini Shahr, Iran | en_US |
dc.description | A. Hamoodi, Karrar/0000-0002-5719-864X; Li, Zhixiong/0000-0002-7265-0008; Eftekhari, SeyedAli/0000-0002-9730-4232; Jasim, Dheyaa Jumaah/0000-0001-7259-3392 | en_US |
dc.description.abstract | This study aims to investigate the viscosity behavior of multi-walled carbon nanotube (MWCNT) - titanium dioxide (TiO2) (40-60) - SAE50 oil nanofluid using an Artificial Neural Network (ANN) modeling approach. The main objective is to develop a highly accurate predictive model for viscosity by considering three input parameters: temperature, solid volume fraction (SVF), and shear rate (SR). Rheological measurements provide experimental data used to train and validate the ANN model. The ANN model's architecture, activation functions, and training algorithms are carefully chosen. Data are divided to three subsets including train, validation and test. ANN is trained using trainlm algorithm for 50 times to vanish the effect of random nature of ANN weight initialization. The trained ANN model is then utilized to predict the viscosity of the nanofluid under varying conditions. The results demonstrate the efficacy of the proposed ANN model in capturing the complex relationship between viscosity and the input parameters, providing accurate viscosity predictions for the MWCNT-TiO2-oil SAE50 nanofluid. Furthermore, the influence of temperature, SVF, and SR on viscosity is analyzed, offering valuable insights into the flow behavior of the nanofluid. According to the obtained results, the developed ANN model presents a reliable and efficient approach to estimate the viscosity of the MWCNTTiO2-SAE50 oil nanofluid, eliminating the need for costly and extensive experimental measurements within the analyzed range. ANN could model the nanofluid viscosity with R2 = 0.9998 and MSE= 0.000189 that is quite acceptable. Also, the experimental data revealed that for the investigated nanofluid, temperature and shear rate have impressive effect on the viscosity (changing viscosity more than 100% for the analyzed margin), on the other hand, the nanoparticle volume fraction effect is much lower, to be more precise, increasing the nanoparticle percentage will increase the viscosity mean value around 30%. | en_US |
dc.description.sponsorship | Science Foundation of Donghai Lab- oratory [DH-2022KF0302] | en_US |
dc.description.sponsorship | This work is supported by the Science Foundation of Donghai Lab- oratory (No. DH-2022KF0302) . | en_US |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1016/j.triboint.2023.109185 | |
dc.identifier.issn | 0301-679X | |
dc.identifier.issn | 1879-2464 | |
dc.identifier.scopus | 2-s2.0-85180478982 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.triboint.2023.109185 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1154 | |
dc.identifier.volume | 191 | en_US |
dc.identifier.wos | WOS:001137978800001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Titanium Dioxide | en_US |
dc.subject | SAE50 oil | en_US |
dc.subject | ANN prediction | en_US |
dc.subject | Model | en_US |
dc.subject | Multi-Walled Carbon Nanotube (MWCNT) | en_US |
dc.title | Obtaining an accurate prediction model for viscosity of a new nano-lubricant containing multi-walled carbon nanotube-titanium dioxide nanoparticles with oil SAE50 | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |