Efficient scheme for a category of variable-order optimal control problems based on the sixth-kind Chebyshev polynomials

dc.authorscopusid 56685323200
dc.authorscopusid 36903183800
dc.authorscopusid 23028598900
dc.authorscopusid 7005872966
dc.authorscopusid 59352444200
dc.authorscopusid 57222484465
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Sadri, Khadijeh/JWA-5374-2024
dc.authorwosid Ahmadian, Ali/JHT-5936-2023
dc.contributor.author Sadri, Khadijeh
dc.contributor.author Hosseini, Kamyar
dc.contributor.author Salahshour, Soheil
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ahmadian, Ali
dc.contributor.author Park, Choonkil
dc.date.accessioned 2024-12-15T15:41:06Z
dc.date.available 2024-12-15T15:41:06Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Sadri, Khadijeh] Near East Univ TRNC, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Hosseini, Kamyar] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh] Univ Kyrenia, Fac Art & Sci, TRNC, Mersin 10, Kyrenia, Turkiye; [Park, Choonkil] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea; [Hosseini, Kamyar; Baleanu, Dumitru] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil; Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye; [Baleanu, Dumitru] Inst Space Sci, R-76900 Bucharest, Romania; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy en_US
dc.description.abstract The main goal of the present study is to introduce an operational collocation scheme based on sixth-kind Chebyshev polynomials (SCPs) to solve a category of optimal control problems involving a variable-order dynamical system (VODS). To achieve this goal, the collocation method based on SCPs, the pseudo-operational matrix for the fractional integral operator, and the dual operational matrix are adopted. More precisely, an algebraic equation is obtained instead of the objective function and a system of algebraic equation is derived instead of the VODS. The constrained equations obtained from joining the objective function to the VODS are ultimately optimized using the method of the Lagrange multipliers. Detailed convergence analysis of the suggested method is given as well. Four illustrative examples along with several tables and figures are formally provided to support the efficiency and preciseness of the numerical scheme. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1515/dema-2024-0034
dc.identifier.issn 0420-1213
dc.identifier.issn 2391-4661
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85210296176
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1515/dema-2024-0034
dc.identifier.uri https://hdl.handle.net/20.500.14517/7534
dc.identifier.volume 57 en_US
dc.identifier.wos WOS:001360737600001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Z O O en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject variable-order optimal control problems en_US
dc.subject operational collocation method en_US
dc.subject sixth-kind Chebyshev polynomials en_US
dc.subject convergence analysis en_US
dc.title Efficient scheme for a category of variable-order optimal control problems based on the sixth-kind Chebyshev polynomials en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files