Efficient scheme for a category of variable-order optimal control problems based on the sixth-kind Chebyshev polynomials

dc.authorscopusid56685323200
dc.authorscopusid36903183800
dc.authorscopusid23028598900
dc.authorscopusid7005872966
dc.authorscopusid59352444200
dc.authorscopusid57222484465
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.authorwosidSadri, Khadijeh/JWA-5374-2024
dc.authorwosidAhmadian, Ali/JHT-5936-2023
dc.contributor.authorSadri, Khadijeh
dc.contributor.authorHosseini, Kamyar
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorAhmadian, Ali
dc.contributor.authorPark, Choonkil
dc.date.accessioned2024-12-15T15:41:06Z
dc.date.available2024-12-15T15:41:06Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Sadri, Khadijeh] Near East Univ TRNC, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Hosseini, Kamyar] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh] Univ Kyrenia, Fac Art & Sci, TRNC, Mersin 10, Kyrenia, Turkiye; [Park, Choonkil] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea; [Hosseini, Kamyar; Baleanu, Dumitru] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil; Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye; [Baleanu, Dumitru] Inst Space Sci, R-76900 Bucharest, Romania; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italyen_US
dc.description.abstractThe main goal of the present study is to introduce an operational collocation scheme based on sixth-kind Chebyshev polynomials (SCPs) to solve a category of optimal control problems involving a variable-order dynamical system (VODS). To achieve this goal, the collocation method based on SCPs, the pseudo-operational matrix for the fractional integral operator, and the dual operational matrix are adopted. More precisely, an algebraic equation is obtained instead of the objective function and a system of algebraic equation is derived instead of the VODS. The constrained equations obtained from joining the objective function to the VODS are ultimately optimized using the method of the Lagrange multipliers. Detailed convergence analysis of the suggested method is given as well. Four illustrative examples along with several tables and figures are formally provided to support the efficiency and preciseness of the numerical scheme.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1515/dema-2024-0034
dc.identifier.issn0420-1213
dc.identifier.issn2391-4661
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85210296176
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1515/dema-2024-0034
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7534
dc.identifier.volume57en_US
dc.identifier.wosWOS:001360737600001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherde Gruyter Poland Sp Z O Oen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectvariable-order optimal control problemsen_US
dc.subjectoperational collocation methoden_US
dc.subjectsixth-kind Chebyshev polynomialsen_US
dc.subjectconvergence analysisen_US
dc.titleEfficient scheme for a category of variable-order optimal control problems based on the sixth-kind Chebyshev polynomialsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files