Embeddings and Separable Differential Operators in Spaces of Sobolev-Lions type

dc.authorscopusid6508234400
dc.authorwosidShakhmurov, Veli/AAG-8871-2019
dc.contributor.authorShakhmurov, V. B.
dc.date.accessioned2024-05-25T11:22:06Z
dc.date.available2024-05-25T11:22:06Z
dc.date.issued2008
dc.departmentOkan Universityen_US
dc.department-tempOkan Univ, Istanbul, Turkeyen_US
dc.description.abstractWe study embedding theorems for anisotropic spaces of Bessel-Lions type H-p,gamma(l) (Omega; E-0, E), where E-0 and E are Banach spaces. We obtain the most regular spaces Ea for which mixed differentiation operators D-alpha from H-p,gamma(l)(Omega; E-0, E) to L-p,L-gamma(Omega; E-alpha) are bounded. The spaces Ea are interpolation spaces between E-0 and E, depending on alpha = (alpha(1), alpha(2), . . . , alpha n) and l = (l(1), l(2), . . . , l(n)). The results obtained are applied to prove the separability of anisotropic differential operator equations with variable coefficients.en_US
dc.identifier.citation23
dc.identifier.doi10.1134/S0001434608110278
dc.identifier.endpage858en_US
dc.identifier.issn0001-4346
dc.identifier.issn1573-8876
dc.identifier.issue5-6en_US
dc.identifier.scopus2-s2.0-59749091391
dc.identifier.startpage842en_US
dc.identifier.urihttps://doi.org/10.1134/S0001434608110278
dc.identifier.urihttps://hdl.handle.net/20.500.14517/652
dc.identifier.volume84en_US
dc.identifier.wosWOS:000262855600027
dc.identifier.wosqualityQ3
dc.language.isoen
dc.publisherMaik Nauka/interperiodica/springeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectembedding operatoren_US
dc.subjectHilbert spaceen_US
dc.subjectBanach-valued function spaceen_US
dc.subjectdifferential operator equationen_US
dc.subjectoperator-valued Fourier multiplieren_US
dc.subjectinterpolation of Banach spacesen_US
dc.subjectprobability spaceen_US
dc.subjectUMD-spaceen_US
dc.subjectSobolev-Lions spaceen_US
dc.titleEmbeddings and Separable Differential Operators in Spaces of Sobolev-Lions typeen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files