Determination of Body Fat Percentage by Gender Based with Photoplethysmography Signal Using Machine Learning Algorithm

dc.authoridBozkurt, Mehmet Recep/0000-0003-0673-4454
dc.authoridUCAR, Muhammed Kursad/0000-0002-0636-8645
dc.authorscopusid57221493051
dc.authorscopusid56779734300
dc.authorscopusid57218325656
dc.authorscopusid57221496555
dc.authorscopusid55293402300
dc.authorscopusid48761063800
dc.authorwosidBozkurt, Mehmet Recep/A-4167-2016
dc.authorwosidBaraklı, Burhan/HJY-1741-2023
dc.authorwosidUCAR, Muhammed Kursad/D-1321-2019
dc.contributor.authorAkman, M.
dc.contributor.authorUcar, M. K.
dc.contributor.authorUcar, Z.
dc.contributor.authorUcar, K.
dc.contributor.authorBarakli, B.
dc.contributor.authorBozkurt, M. R.
dc.date.accessioned2024-05-25T11:25:41Z
dc.date.available2024-05-25T11:25:41Z
dc.date.issued2022
dc.departmentOkan Universityen_US
dc.department-temp[Akman, M.] Beykent Univ, Sch Hlth Sci, Dept Nutr & Dietet, Istanbul, Turkey; [Ucar, M. K.; Barakli, B.; Bozkurt, M. R.] Sakarya Univ, Fac Engn Elect Elect Engn, TR-54187 Sakarya, Turkey; [Ucar, Z.] Istanbul Okan Univ, Inst Hlth Sci Nutr & Dietet, TR-34394 Istanbul, Turkey; [Ucar, K.] Hacettepe Univ, Fac Hlth Sci, Dept Nutr & Dietet, TR-06100 Ankara, Turkeyen_US
dc.descriptionBozkurt, Mehmet Recep/0000-0003-0673-4454; UCAR, Muhammed Kursad/0000-0002-0636-8645en_US
dc.description.abstractObjective: Calculation of body fat percentage (BFP) is a frequently encountered problem in the literature. BFP is one of the most significant parameters which should be processed in body weight control programs. Anthropometric measurements and statistical methods are being used generally in the literature for BFP estimation. Artificial intelligence and gender-based models with a photoplethysmography signal (PPG) were proposed for BFP estimation in this study. Material and Methods: In the study, the PPG signal is divided into lower frequency bands, and 25 features are taken out from each frequency band. Artificial intelligence algorithms were created by reducing the extracted features with the help of a feature selection algorithm. Results: According to the results obtained, models with performance values of RMSE = 0.35, R =1 for men, RMSE = 0.87, R =1 for women were created. Conclusions: In the best performing models, the PPG signal's high-frequency components are used for men, whereas the low-frequency band of the PPG signal is used for women. As a result, the proposed model in this study is considered to be used for BFP measurement.en_US
dc.identifier.citationcount7
dc.identifier.doi10.1016/j.irbm.2020.12.003
dc.identifier.endpage186en_US
dc.identifier.issn1959-0318
dc.identifier.issn1876-0988
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85099309602
dc.identifier.scopusqualityQ1
dc.identifier.startpage169en_US
dc.identifier.urihttps://doi.org/10.1016/j.irbm.2020.12.003
dc.identifier.urihttps://hdl.handle.net/20.500.14517/929
dc.identifier.volume43en_US
dc.identifier.wosWOS:000809732400004
dc.identifier.wosqualityQ2
dc.language.isoen
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount12
dc.subjectPhotoplethysmography signalen_US
dc.subjectMachine learningen_US
dc.subjectBody compositionen_US
dc.subjectBody fat percentageen_US
dc.subjectGender-based body fat percentageen_US
dc.titleDetermination of Body Fat Percentage by Gender Based with Photoplethysmography Signal Using Machine Learning Algorithmen_US
dc.typeArticleen_US
dc.wos.citedbyCount9
dspace.entity.typePublication

Files