Determining the best structure for an artificial neural network to model the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricant

dc.authoridEftekhari, SeyedAli/0000-0002-9730-4232
dc.authorscopusid55767855700
dc.authorscopusid57222872672
dc.authorscopusid22136195900
dc.authorscopusid55375146900
dc.authorscopusid23028598900
dc.authorscopusid57211509514
dc.authorwosidEftekhari, SeyedAli/AAG-3342-2019
dc.contributor.authorEsfe, Mohammad Hemmat
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorHashemian, Mohammad
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorMotallebi, Seyed Majid
dc.date.accessioned2024-05-25T11:38:55Z
dc.date.available2024-05-25T11:38:55Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Esfe, Mohammad Hemmat; Motallebi, Seyed Majid] Nanofluid Adv Res Team, Tehran, Iran; [Eftekhari, S. Ali; Hashemian, Mohammad] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanonen_US
dc.descriptionEftekhari, SeyedAli/0000-0002-9730-4232en_US
dc.description.abstractIn this paper, an artificial neural network (ANN) was utilized to examine the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricant. The effect of temperature, shear rate (SR) and solid volume fraction (SVF) on dynamic viscosity is studied at a temperature ranging from T = 5-55 degrees C, SR varying SR= 50-900 rpm, and SVF= 0.05-1%. A set of 172 experimental data is determined and applied as a training dataset of ANNs with various structures. A two-layer ANN with 17 neurons in the hidden layer is selected with R2 = 0.9999 and MSE= 7.77e-5 to predict the dynamic viscosity. Results show that SR is the most influential parameter having an inverse effect on the dynamic viscosity, i.e. by increasing this parameter from 50 to 900 rpm, the viscosity reduces from 600 cP to 40 cP.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.mtcomm.2023.107607
dc.identifier.issn2352-4928
dc.identifier.scopus2-s2.0-85181751760
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2023.107607
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1307
dc.identifier.volume38en_US
dc.identifier.wosWOS:001127699100001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNanofluiden_US
dc.subjectLubricanten_US
dc.subjectViscosityen_US
dc.subjectANNen_US
dc.titleDetermining the best structure for an artificial neural network to model the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricanten_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files