Determining the best structure for an artificial neural network to model the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricant
dc.authorid | Eftekhari, SeyedAli/0000-0002-9730-4232 | |
dc.authorscopusid | 55767855700 | |
dc.authorscopusid | 57222872672 | |
dc.authorscopusid | 22136195900 | |
dc.authorscopusid | 55375146900 | |
dc.authorscopusid | 23028598900 | |
dc.authorscopusid | 57211509514 | |
dc.authorwosid | Eftekhari, SeyedAli/AAG-3342-2019 | |
dc.contributor.author | Esfe, Mohammad Hemmat | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Sajadi, S. Mohammad | |
dc.contributor.author | Hashemian, Mohammad | |
dc.contributor.author | Salahshour, Soheil | |
dc.contributor.author | Motallebi, Seyed Majid | |
dc.date.accessioned | 2024-05-25T11:38:55Z | |
dc.date.available | 2024-05-25T11:38:55Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Esfe, Mohammad Hemmat; Motallebi, Seyed Majid] Nanofluid Adv Res Team, Tehran, Iran; [Eftekhari, S. Ali; Hashemian, Mohammad] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon | en_US |
dc.description | Eftekhari, SeyedAli/0000-0002-9730-4232 | en_US |
dc.description.abstract | In this paper, an artificial neural network (ANN) was utilized to examine the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricant. The effect of temperature, shear rate (SR) and solid volume fraction (SVF) on dynamic viscosity is studied at a temperature ranging from T = 5-55 degrees C, SR varying SR= 50-900 rpm, and SVF= 0.05-1%. A set of 172 experimental data is determined and applied as a training dataset of ANNs with various structures. A two-layer ANN with 17 neurons in the hidden layer is selected with R2 = 0.9999 and MSE= 7.77e-5 to predict the dynamic viscosity. Results show that SR is the most influential parameter having an inverse effect on the dynamic viscosity, i.e. by increasing this parameter from 50 to 900 rpm, the viscosity reduces from 600 cP to 40 cP. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.mtcomm.2023.107607 | |
dc.identifier.issn | 2352-4928 | |
dc.identifier.scopus | 2-s2.0-85181751760 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.mtcomm.2023.107607 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1307 | |
dc.identifier.volume | 38 | en_US |
dc.identifier.wos | WOS:001127699100001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Nanofluid | en_US |
dc.subject | Lubricant | en_US |
dc.subject | Viscosity | en_US |
dc.subject | ANN | en_US |
dc.title | Determining the best structure for an artificial neural network to model the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricant | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |