Original A new modern scheme for solving fractal-fractional differential equations based on deep feedforward neural network with multiple hidden layer

dc.authoridAhmadian, Ali/0000-0002-0106-7050
dc.authoridSalahshour, Soheil/0000-0003-1390-3551
dc.authorscopusid57969807300
dc.authorscopusid55670963500
dc.authorscopusid55602202100
dc.authorscopusid15837562800
dc.authorscopusid23028598900
dc.authorwosidAhmadian, Ali/N-3697-2015
dc.contributor.authorAdmon, Mohd Rashid
dc.contributor.authorSenu, Norazak
dc.contributor.authorAhmadian, Ali
dc.contributor.authorMajid, Zanariah Abdul
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-05-25T11:28:17Z
dc.date.available2024-05-25T11:28:17Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Admon, Mohd Rashid; Senu, Norazak; Majid, Zanariah Abdul] Univ Putra Malaysia, Inst Math Res, Serdang, Selangor, Malaysia; [Ahmadian, Ali] Univ Mediterranea Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Ahmadian, Ali] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Tuzla, Istanbul, Turkiyeen_US
dc.descriptionAhmadian, Ali/0000-0002-0106-7050; Salahshour, Soheil/0000-0003-1390-3551en_US
dc.description.abstractThe recent development of knowledge in fractional calculus introduced an advanced superior operator known as fractal-fractional derivative (FFD). This operator combines memory effect and self-similar property that give better accurate representation of real world problems through fractal-fractional differential equations (FFDEs). However, the existence of fresh and modern numerical technique on solving FFDEs is still scarce. Originally invented for machine learning technique, artificial neural network (ANN) is cutting-edge scheme that have shown promising result in solving the fractional differential equations (FDEs). Thus, this research aims to extend the application of ANN to solve FFDE with power law kernel in Caputo sense (FFDEPC) by develop a vectorized algorithm based on deep feedforward neural network that consists of multiple hidden layer (DFNN-2H) with Adam optimization. During the initial stage of the method development, the basic framework on solving FFDEs is designed. To minimize the burden of computational time, the vectorized algorithm is constructed at the next stage for method to be performed efficiently. Several example have been tested to demonstrate the applicability and efficiency of the method. Comparison on exact solutions and some previous published method indicate that the proposed scheme have give good accuracy and low computational time.en_US
dc.description.sponsorshipMalaysia Ministry of Education [FRGS/1/2022/STG06/UPM/02/2]; Universiti Teknologi Malaysiaen_US
dc.description.sponsorshipThe authors are very thankful to Malaysia Ministry of Education for awarded Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) and Fellow Scheme from Universiti Teknologi Malaysia for supporting this work.en_US
dc.identifier.citationcount0
dc.identifier.doi10.1016/j.matcom.2023.11.002
dc.identifier.endpage333en_US
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.scopus2-s2.0-85178128453
dc.identifier.scopusqualityQ1
dc.identifier.startpage311en_US
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2023.11.002
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1145
dc.identifier.volume218en_US
dc.identifier.wosWOS:001133499400001
dc.identifier.wosqualityQ1
dc.institutionauthorSalahshour S.
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount5
dc.subjectFractal-fractional differential equationen_US
dc.subjectArtificial Neural Networken_US
dc.subjectDeep feedforward neural networken_US
dc.subjectVectorized algorithmen_US
dc.subjectAdam optimizationen_US
dc.titleOriginal A new modern scheme for solving fractal-fractional differential equations based on deep feedforward neural network with multiple hidden layeren_US
dc.typeArticleen_US
dc.wos.citedbyCount3
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files