Scrutnet: a Deep Ensemble Network for Detecting Fake News in Online Text

dc.authorscopusid57274634600
dc.authorscopusid59702178300
dc.authorscopusid57208839546
dc.authorscopusid55450561600
dc.authorscopusid57205606652
dc.authorscopusid25824675400
dc.authorscopusid25824675400
dc.contributor.authorVerma, Aryan
dc.contributor.authorPriyanka, P.
dc.contributor.authorKhan, Tayyab
dc.contributor.authorSingh, Karan
dc.contributor.authorYesufu, Lawal . O.
dc.contributor.authorAriffin, Mazeyanti Mohd
dc.contributor.authorAhmadian, Ali
dc.date.accessioned2025-04-15T23:53:21Z
dc.date.available2025-04-15T23:53:21Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-temp[Verma, Aryan] Univ Edinburgh, Sch Math, Edinburgh EH8 9YL, Midlothian, Scotland; [Priyanka, P.] Natl Inst Technol Hamirpur, Dept Comp Sci & Engn, Hamirpur 177005, Himachal Prades, India; [Khan, Tayyab] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, New Delhi 110067, India; [Singh, Karan] IIIT Sonepat, Dept Comp Sci & Engn, Sonipat 131001, India; [Yesufu, Lawal . O.] Hult Int Business Sch, Dubai, U Arab Emirates; [Ariffin, Mazeyanti Mohd] Univ Teknol PETRONAS, Posit Comp Res Cluster, Seri Iskandar 32610, Perak, Malaysia; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Verma, Aryan; Ahmadian, Ali] Jadara Univ, Jadara Res Ctr, Irbid 21110, Jordanen_US
dc.description.abstractThe expeditious propagation of fake news through online social media platforms has cropped up as a captious challenge, undermining the credibility of information sources and affecting public trust. Accurate detection of fake news is imperative to maintain the integrity of online content but is constrained by availability of data. This research aims to detect fake news from online articles by proposing a novel deep learning ensemble network capable of effectively discerning between genuine and fabricated news articles using limited data. We introduce ScrutNet, which leverages the synergistic capabilities of a bidirectional long short-term memory network and a convolutional neural network, which have been meticulously designed and fine-tuned for the task by us. This comprehensive ensemble classifier captures both sequential dependencies and local patterns within the textual data without requiring very large datasets like transformer based models. Through rigorous experimentation, we optimise the individual model parameters and ensemble strategy. The experimental results showcase the remarkable efficacy of ScrutNet in the detection of fake news, with an outstanding precision of 99.56%, 99.43% specificity, and an F1 score of 99.49% achieved on the partition test of the data set. Comparative analysis against state-of-the-art baselines demonstrates the superior performance of ScrutNet, establishing its prominence as a generalised and dependable fake news detection mechanism.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1007/s13278-025-01412-3
dc.identifier.issn1869-5450
dc.identifier.issn1869-5469
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-105000463545
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s13278-025-01412-3
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7786
dc.identifier.volume15en_US
dc.identifier.wosWOS:001449047800004
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringer Wienen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFake News Detectionen_US
dc.subjectBi-Directional Lstmen_US
dc.subjectCnnen_US
dc.subjectSocial Mediaen_US
dc.titleScrutnet: a Deep Ensemble Network for Detecting Fake News in Online Texten_US
dc.typeArticleen_US
dspace.entity.typePublication

Files