Scrutnet: a Deep Ensemble Network for Detecting Fake News in Online Text
dc.authorscopusid | 57274634600 | |
dc.authorscopusid | 59702178300 | |
dc.authorscopusid | 57208839546 | |
dc.authorscopusid | 55450561600 | |
dc.authorscopusid | 57205606652 | |
dc.authorscopusid | 25824675400 | |
dc.authorscopusid | 25824675400 | |
dc.contributor.author | Verma, Aryan | |
dc.contributor.author | Priyanka, P. | |
dc.contributor.author | Khan, Tayyab | |
dc.contributor.author | Singh, Karan | |
dc.contributor.author | Yesufu, Lawal . O. | |
dc.contributor.author | Ariffin, Mazeyanti Mohd | |
dc.contributor.author | Ahmadian, Ali | |
dc.date.accessioned | 2025-04-15T23:53:21Z | |
dc.date.available | 2025-04-15T23:53:21Z | |
dc.date.issued | 2025 | |
dc.department | Okan University | en_US |
dc.department-temp | [Verma, Aryan] Univ Edinburgh, Sch Math, Edinburgh EH8 9YL, Midlothian, Scotland; [Priyanka, P.] Natl Inst Technol Hamirpur, Dept Comp Sci & Engn, Hamirpur 177005, Himachal Prades, India; [Khan, Tayyab] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, New Delhi 110067, India; [Singh, Karan] IIIT Sonepat, Dept Comp Sci & Engn, Sonipat 131001, India; [Yesufu, Lawal . O.] Hult Int Business Sch, Dubai, U Arab Emirates; [Ariffin, Mazeyanti Mohd] Univ Teknol PETRONAS, Posit Comp Res Cluster, Seri Iskandar 32610, Perak, Malaysia; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Verma, Aryan; Ahmadian, Ali] Jadara Univ, Jadara Res Ctr, Irbid 21110, Jordan | en_US |
dc.description.abstract | The expeditious propagation of fake news through online social media platforms has cropped up as a captious challenge, undermining the credibility of information sources and affecting public trust. Accurate detection of fake news is imperative to maintain the integrity of online content but is constrained by availability of data. This research aims to detect fake news from online articles by proposing a novel deep learning ensemble network capable of effectively discerning between genuine and fabricated news articles using limited data. We introduce ScrutNet, which leverages the synergistic capabilities of a bidirectional long short-term memory network and a convolutional neural network, which have been meticulously designed and fine-tuned for the task by us. This comprehensive ensemble classifier captures both sequential dependencies and local patterns within the textual data without requiring very large datasets like transformer based models. Through rigorous experimentation, we optimise the individual model parameters and ensemble strategy. The experimental results showcase the remarkable efficacy of ScrutNet in the detection of fake news, with an outstanding precision of 99.56%, 99.43% specificity, and an F1 score of 99.49% achieved on the partition test of the data set. Comparative analysis against state-of-the-art baselines demonstrates the superior performance of ScrutNet, establishing its prominence as a generalised and dependable fake news detection mechanism. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.1007/s13278-025-01412-3 | |
dc.identifier.issn | 1869-5450 | |
dc.identifier.issn | 1869-5469 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-105000463545 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1007/s13278-025-01412-3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/7786 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:001449047800004 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Springer Wien | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fake News Detection | en_US |
dc.subject | Bi-Directional Lstm | en_US |
dc.subject | Cnn | en_US |
dc.subject | Social Media | en_US |
dc.title | Scrutnet: a Deep Ensemble Network for Detecting Fake News in Online Text | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |