A Stochastic Neural Network Procedure for the Nonlinear Typhoid Fever Disease System

dc.authorscopusid 56184182600
dc.authorscopusid 57223008490
dc.authorscopusid 57993101600
dc.authorscopusid 57203870179
dc.authorscopusid 23028598900
dc.authorscopusid 53982004700
dc.authorwosid Bulut, Hasan/V-6944-2018
dc.authorwosid Sabir, Zulqurnain/Aas-8882-2021
dc.authorwosid Umar, Muhammad/Aar-8035-2020
dc.contributor.author Sabir, Zulqurnain
dc.contributor.author Akkilic, Ayse Nur
dc.contributor.author Bulut, Hasan
dc.contributor.author Umar, Muhammad
dc.contributor.author Salahshour, Soheil
dc.contributor.author Saba, Iram
dc.date.accessioned 2025-10-15T16:45:30Z
dc.date.available 2025-10-15T16:45:30Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Akkilic, Ayse Nur; Bulut, Hasan] Firat Univ, Dept Math, Elazig, Turkiye; [Bulut, Hasan] Azerbaijan Univ, Jeyhun Hajibeyli Str 71, Baku, Azerbaijan; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Saba, Iram] GC Women Univ Sialkot, Dept Chem, Sialkot, Punjab, Pakistan en_US
dc.description.abstract The aim of this work is to provide the numerical results of the typhoid fever disease system by applying an artificial neural network. The nonlinear typhoid fever disease system is considered into susceptible, exposed, infected, and recovered. The typhoid fever disease system is one of the nonlinear models and numerical results of the system are accomplished via stochastic computing scheme. The optimization is performed by using the Levenberg-Marquardt backpropagation (LMQBP) neural network for solving the nonlinear typhoid fever disease system. An explicit Runge-Kutta solver implemented to calculate the dataset, which is used to lessen the mean square error by data separating into testing (10%), training (70%), and validation (20%). The proposed stochastic scheme is implemented by taking sixteen neurons, log-sigmoid transfer function in the hidden layer, with the input and output layer structure for solving the typhoid fever disease system. The exactness of the scheme is validated by applying the assessment of reference and obtained outputs along with negligible values of the absolute error. Furthermore, the statistical presentations using various disciplines are implemented to indorse the approach's consistency. The proposed stochastic scheme is implemented first time to solve the nonlinear typhoid fever disease system. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1007/s13721-025-00599-x
dc.identifier.issn 2192-6662
dc.identifier.issn 2192-6670
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-105015146046
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s13721-025-00599-x
dc.identifier.uri https://hdl.handle.net/20.500.14517/8457
dc.identifier.volume 14 en_US
dc.identifier.wos WOS:001566583200003
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Wien en_US
dc.relation.ispartof Network Modeling and Analysis in Health Informatics and Bioinformatics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Typhoid Fever en_US
dc.subject Transfer Function en_US
dc.subject Neural Network en_US
dc.subject Levenberg-Marquardt en_US
dc.subject Optimization en_US
dc.title A Stochastic Neural Network Procedure for the Nonlinear Typhoid Fever Disease System en_US
dc.type Article en_US
dspace.entity.type Publication

Files