Deep prediction on financial market sequence for enhancing economic policies

dc.authoridFerrara, Massimiliano/0000-0002-3663-836X
dc.authorscopusid23028598900
dc.authorscopusid56189811500
dc.authorscopusid58316902100
dc.authorscopusid59376822900
dc.authorscopusid56224779700
dc.authorscopusid55602202100
dc.authorwosidAhmadian, Ali/JHT-5936-2023
dc.authorwosidFerrara, Massimiliano/P-8797-2014
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorSalimi, Mehdi
dc.contributor.authorTehranian, Kian
dc.contributor.authorErfanibehrouz, Niloufar
dc.contributor.authorFerrara, Massimiliano
dc.contributor.authorAhmadian, Ali
dc.date.accessioned2024-11-15T19:39:07Z
dc.date.available2024-11-15T19:39:07Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Salahshour, Soheil; Ferrara, Massimiliano; Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bhacesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salimi, Mehdi] Mediterranea Univ Reggio Calabria, Decis Lab, Calabria, Italy; [Tehranian, Kian] Univ Calif Angeles UCLA, Dept Econ, Los Angeles, CA USA; [Erfanibehrouz, Niloufar] Syracuse Univ, Dept Econ, Syracuse, NY 13244 USA; [Ferrara, Massimiliano] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, Via Univ 25, I-89124 Reggio Di Calabria, Italyen_US
dc.descriptionFerrara, Massimiliano/0000-0002-3663-836Xen_US
dc.description.abstractNumerous sectors are significantly impacted by the quick advancement of image and video processing technologies. Investors can kind knowledgeable savings choices based on the examination and projection of financial bazaar income, and the government can create accurate policies for various forms of economic control. This study uses an artificial rabbits optimization algorithm in image processing technology to examine and forecast the returns on financial markets and multiple indexes using a deep-learning LSTM network. This research uses the time series technique to record the regional correlation properties of financial market data. Convolution pooling in LSTM is then used to gather significant details concealed in the time sequence information, generate the data's tendency bend, and incorporate the structures using technology for image processing to ultimately arrive at the forecast of the economic sector's moment series earnings index. A popular artificial neural network used in time series examination is the long short-term memory (LSTM) network. It can accurately forecast financial marketplace values by processing information with numerous input and output timesteps. The correctness of financial market predictions can be increased by optimizing the hyperparameters of an LSTM model using metaheuristic procedures like the Artificial Rabbits Optimization Algorithm (ARO). This research presents the development of an enhanced deep LSTM network with the ARO method (LSTM-ARO) for stock price prediction. According to the findings, the research's deep learning system for financial market series prediction is efficient and precise. Data analysis and image processing technologies offer practical approaches and significantly advance finance studies.en_US
dc.description.sponsorshipEuropean Union under the NextGeneration EU Programme; Italian Ministry of University and Research (MUR) [P20225MJW8, CUP: E53D23016470001]; MUR; University Mediterranea of Reggio Calabria - Decisions Laben_US
dc.description.sponsorshipThis work was funded by European Union under the NextGeneration EU Programme within the Plan "PNRR - Missione 4 "Istruzione e Ricerca" - Componente C2 Investimento 1.1 "Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)" by the Italian Ministry of University and Research (MUR), Project title: "Climate risk and uncertainty: environmental sustainability and asset pricing". Project code "P20225MJW8" (CUP: E53D23016470001), MUR D.D. financing decree n. 1409 of 14/09/2022. The work was also supported by the University Mediterranea of Reggio Calabria - Decisions Lab.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.citation0
dc.identifier.doi10.1007/s10203-024-00488-4
dc.identifier.issn1593-8883
dc.identifier.issn1129-6569
dc.identifier.scopus2-s2.0-85207038881
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10203-024-00488-4
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7011
dc.identifier.wosWOS:001339250000001
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.publisherSpringer int Publ Agen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImage processingen_US
dc.subjectFinancial marketen_US
dc.subjectTime series predictionen_US
dc.subjectDeep learning algorithmen_US
dc.subjectArtificial rabbits optimization algorithmen_US
dc.subjectPredictionen_US
dc.subjectG17en_US
dc.subjectG11en_US
dc.subjectC45en_US
dc.subjectC23en_US
dc.titleDeep prediction on financial market sequence for enhancing economic policiesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files