Estimation of body fat percentage using hybrid machine learning algorithms

dc.authorscopusid56779734300
dc.authorscopusid57218325656
dc.authorscopusid57218328852
dc.authorscopusid57208929805
dc.authorwosidQuispe Calcina, Willian/JRX-9094-2023
dc.contributor.authorUcar, Muhammed Kursad
dc.contributor.authorUcar, Zeliha
dc.contributor.authorKoksal, Fatih
dc.contributor.authorDaldal, Nihat
dc.date.accessioned2024-05-25T11:42:22Z
dc.date.available2024-05-25T11:42:22Z
dc.date.issued2021
dc.departmentOkan Universityen_US
dc.department-temp[Ucar, Muhammed Kursad] Sakarya Univ, Fac Engn, Elect Elect Engn, TR-54187 Serdivan, Sakarya, Turkey; [Ucar, Zeliha] Istanbul Okan Univ, Inst Hlth Sci Nutr & Dietet, Istanbul, Turkey; [Koksal, Fatih] Bursa Higher Specializat Educ & Res Hosp, TR-16310 Bursa, Turkey; [Daldal, Nihat] Abant Izzet Baysal Univ, Fac Engn, Dept Elect & Elect Engn, TR-14280 Bolu, Turkeyen_US
dc.description.abstractBefore obesity treatment, body fat percentage (BFP) should be determined. BFP cannot be measured by weighing. The devices developed to produce solutions to this problem are called "Body Analysis Devices". These devices are very costly. Therefore, more practical and cost-effective solutions are needed. This study aims to determine BFP using hybrid machine learning methods with high accuracy rate and minimum parameter. This study uses real data sets, which are 13 anthropometric measurements of individuals. Different feature groups were created with feature selection algorithm. In the next step, 4 different hybrid models were created by using MLFFNN, SVMs, and DT regression models. According to the results, BFP of individuals can be estimated with a correlation value of R = 0.79 with one anthropometric measurement. The results show that the developed system can be used to estimate BFP in practice. Besides, the system can calculate BFP with just one anthropometric measurement without device requirement. (C) 2020 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citation19
dc.identifier.doi10.1016/j.measurement.2020.108173
dc.identifier.issn0263-2241
dc.identifier.issn1873-412X
dc.identifier.scopus2-s2.0-85088832830
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.measurement.2020.108173
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1591
dc.identifier.volume167en_US
dc.identifier.wosWOS:000579500000009
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherElsevier Sci Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBody compositionen_US
dc.subjectBody fat percentage calculationen_US
dc.subjectBody fat percentage estimationen_US
dc.subjectMachine learningen_US
dc.subjectArtificial intelligenceen_US
dc.titleEstimation of body fat percentage using hybrid machine learning algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files