Iterative enhancement fusion-based cascaded model for detection and localization of multiple disease from CXR-Images

dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorid Innab, Nisreen/0000-0003-4412-7727
dc.authorid Taniar, David/0000-0002-8862-3960
dc.authorid Sharma, Vikrant/0000-0003-3178-8657
dc.authorid Vats, Satvik/0000-0002-9422-4915
dc.authorscopusid 57193131437
dc.authorscopusid 56785043200
dc.authorscopusid 57199490853
dc.authorscopusid 55639324300
dc.authorscopusid 57256480300
dc.authorscopusid 7003899641
dc.authorscopusid 35488323500
dc.authorwosid Innab, Nisreen/JHV-0855-2023
dc.authorwosid Sharma, Vikrant/AEP-6349-2022
dc.authorwosid Singh, Devesh/KIC-3651-2024
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.authorwosid Vats, Satvik/AAU-6249-2020
dc.contributor.author Vats, Satvik
dc.contributor.author Sharma, Vikrant
dc.contributor.author Singh, Karan
dc.contributor.author Singh, Devesh Pratap
dc.contributor.author Bajuri, Mohd Yazid
dc.contributor.author Taniar, David
dc.contributor.author Ahmadian, Ali
dc.date.accessioned 2024-09-11T07:39:20Z
dc.date.available 2024-09-11T07:39:20Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Vats, Satvik; Sharma, Vikrant] Graph Era Hill Univ, Comp Sci & Engn, Dehra Dun, Uttarakhand, India; [Singh, Karan] Jawaharlal Nehru Univ, Sch Comp Syst Sci, New Delhi 110067, India; [Singh, Devesh Pratap] All India Inst Med Sci, Pulm Med, Gorakhpur 273008, Uttar Pradesh, India; [Bajuri, Mohd Yazid] Univ Kebangsaan Malaysia, Fac Med, Dept Orthopaed & Traumatol, Kuala Lumpur, Malaysia; [Taniar, David] Monash Data Futures Inst, Dept Software Syst & Cybersecur, Melbourne, Australia; [Innab, Nisreen] AlMaarefa Univ, Coll Appl Sci, Dept Comp Sci & Informat Syst, Riyadh 13713, Saudi Arabia; [Mouldi, Abir] King Khalid Univ, Coll Engn, Dept Ind Engn, Abha 61421, Saudi Arabia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Ahmadian, Ali/0000-0002-0106-7050; Innab, Nisreen/0000-0003-4412-7727; Taniar, David/0000-0002-8862-3960; Sharma, Vikrant/0000-0003-3178-8657; Vats, Satvik/0000-0002-9422-4915 en_US
dc.description.abstract The lungs are a vital organ of the human body. Malfunctioning of the lungs caused a direct threat to life. In recent years the world has witnessed massive medical insufficiency to handle the lung diseases caused by numerous agents including COVID-19. According to the recommended course of treatment, medical imaging tests including X-rays and CT scans have been very helpful in identifying multiple chest infections. Automatic detection of chest disease is the need of the modern time as it will speed up patient care and reduce doctors' workload. An Iterative Enhancement Fusion-based Cascaded (IEFCM) model to identify multiple diseases from chest X-ray images is suggested in the present paper. If a chest infection is discovered in the imaging, the suggested model additionally localizes the precise infected area on the CXR image. Experimental outcome clearly demonstrates that the performance of suggested model is significantly superior to the pre-trained model, that is the Golden standard dataset and data from the local population. In terms of sensitivity and specificity, IEFCM achieved 95.62 % sensitivity, which indicates an accurate diagnosis of lung disease, reducing the risk of missing any instances. Similarly, the specificity is 96.23 %, which denotes, the IEFCM model correctly identified the healthy people. It resulted decrease of misdiagnosis and unnecessary follow-up testings. en_US
dc.description.sponsorship Deanship of Research and Graduate Studies at King Khalid University [RGP2/210/45]; Almaarefa University, Riyadh, Saudi Arabia [MHIRSP2024013] en_US
dc.description.sponsorship The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/210/45. Also, the article is supported by Researchers Supporting Project number (MHIRSP2024013), Almaarefa University, Riyadh, Saudi Arabia. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.eswa.2024.124464
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.scopus 2-s2.0-85196821923
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.eswa.2024.124464
dc.identifier.uri https://hdl.handle.net/20.500.14517/6172
dc.identifier.volume 255 en_US
dc.identifier.wos WOS:001262339800001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 51
dc.subject Enhancement Fusion en_US
dc.subject Cascaded Model en_US
dc.subject COVID-19 en_US
dc.subject FRCNN en_US
dc.subject Chest X -Ray en_US
dc.subject Radiology en_US
dc.subject Multi Disease en_US
dc.subject Artificial intelligence en_US
dc.title Iterative enhancement fusion-based cascaded model for detection and localization of multiple disease from CXR-Images en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files