Iterative enhancement fusion-based cascaded model for detection and localization of multiple disease from CXR-Images

dc.authoridAhmadian, Ali/0000-0002-0106-7050
dc.authoridInnab, Nisreen/0000-0003-4412-7727
dc.authoridTaniar, David/0000-0002-8862-3960
dc.authoridSharma, Vikrant/0000-0003-3178-8657
dc.authoridVats, Satvik/0000-0002-9422-4915
dc.authorscopusid57193131437
dc.authorscopusid56785043200
dc.authorscopusid57199490853
dc.authorscopusid55639324300
dc.authorscopusid57256480300
dc.authorscopusid7003899641
dc.authorscopusid35488323500
dc.authorwosidInnab, Nisreen/JHV-0855-2023
dc.authorwosidSharma, Vikrant/AEP-6349-2022
dc.authorwosidSingh, Devesh/KIC-3651-2024
dc.authorwosidAhmadian, Ali/N-3697-2015
dc.authorwosidVats, Satvik/AAU-6249-2020
dc.contributor.authorVats, Satvik
dc.contributor.authorSharma, Vikrant
dc.contributor.authorSingh, Karan
dc.contributor.authorSingh, Devesh Pratap
dc.contributor.authorBajuri, Mohd Yazid
dc.contributor.authorTaniar, David
dc.contributor.authorAhmadian, Ali
dc.date.accessioned2024-09-11T07:39:20Z
dc.date.available2024-09-11T07:39:20Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Vats, Satvik; Sharma, Vikrant] Graph Era Hill Univ, Comp Sci & Engn, Dehra Dun, Uttarakhand, India; [Singh, Karan] Jawaharlal Nehru Univ, Sch Comp Syst Sci, New Delhi 110067, India; [Singh, Devesh Pratap] All India Inst Med Sci, Pulm Med, Gorakhpur 273008, Uttar Pradesh, India; [Bajuri, Mohd Yazid] Univ Kebangsaan Malaysia, Fac Med, Dept Orthopaed & Traumatol, Kuala Lumpur, Malaysia; [Taniar, David] Monash Data Futures Inst, Dept Software Syst & Cybersecur, Melbourne, Australia; [Innab, Nisreen] AlMaarefa Univ, Coll Appl Sci, Dept Comp Sci & Informat Syst, Riyadh 13713, Saudi Arabia; [Mouldi, Abir] King Khalid Univ, Coll Engn, Dept Ind Engn, Abha 61421, Saudi Arabia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionAhmadian, Ali/0000-0002-0106-7050; Innab, Nisreen/0000-0003-4412-7727; Taniar, David/0000-0002-8862-3960; Sharma, Vikrant/0000-0003-3178-8657; Vats, Satvik/0000-0002-9422-4915en_US
dc.description.abstractThe lungs are a vital organ of the human body. Malfunctioning of the lungs caused a direct threat to life. In recent years the world has witnessed massive medical insufficiency to handle the lung diseases caused by numerous agents including COVID-19. According to the recommended course of treatment, medical imaging tests including X-rays and CT scans have been very helpful in identifying multiple chest infections. Automatic detection of chest disease is the need of the modern time as it will speed up patient care and reduce doctors' workload. An Iterative Enhancement Fusion-based Cascaded (IEFCM) model to identify multiple diseases from chest X-ray images is suggested in the present paper. If a chest infection is discovered in the imaging, the suggested model additionally localizes the precise infected area on the CXR image. Experimental outcome clearly demonstrates that the performance of suggested model is significantly superior to the pre-trained model, that is the Golden standard dataset and data from the local population. In terms of sensitivity and specificity, IEFCM achieved 95.62 % sensitivity, which indicates an accurate diagnosis of lung disease, reducing the risk of missing any instances. Similarly, the specificity is 96.23 %, which denotes, the IEFCM model correctly identified the healthy people. It resulted decrease of misdiagnosis and unnecessary follow-up testings.en_US
dc.description.sponsorshipDeanship of Research and Graduate Studies at King Khalid University [RGP2/210/45]; Almaarefa University, Riyadh, Saudi Arabia [MHIRSP2024013]en_US
dc.description.sponsorshipThe authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/210/45. Also, the article is supported by Researchers Supporting Project number (MHIRSP2024013), Almaarefa University, Riyadh, Saudi Arabia.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.eswa.2024.124464
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-85196821923
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2024.124464
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6172
dc.identifier.volume255en_US
dc.identifier.wosWOS:001262339800001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnhancement Fusionen_US
dc.subjectCascaded Modelen_US
dc.subjectCOVID-19en_US
dc.subjectFRCNNen_US
dc.subjectChest X -Rayen_US
dc.subjectRadiologyen_US
dc.subjectMulti Diseaseen_US
dc.subjectArtificial intelligenceen_US
dc.titleIterative enhancement fusion-based cascaded model for detection and localization of multiple disease from CXR-Imagesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files