Hyperspectral Image Classification With Multidimensional Attribute Profiles

dc.authorid Aptoula, Erchan/0000-0001-6168-2883
dc.authorscopusid 23396161700
dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.contributor.author Aptoula, Erchan
dc.date.accessioned 2024-05-25T11:18:07Z
dc.date.available 2024-05-25T11:18:07Z
dc.date.issued 2015
dc.department Okan University en_US
dc.department-temp Okan Univ, TR-34959 Istanbul, Turkey en_US
dc.description Aptoula, Erchan/0000-0001-6168-2883 en_US
dc.description.abstract Morphological profiles have been established during the past decade as one of the principal spatial-spectral pixel description methods. Attribute profiles (APs) in particular have recently emerged as their more efficient generalization, enabling the description of image components through arbitrary parametric features, thus leading to more flexible, complete, and accurate content representations. More precisely, their adaptation to hyperspectral images has been realized through their independent application to an image's bands, after some form of spectral dimension reduction, hence resulting in extended APs. In this letter, a variation of this strategy is explored, consisting of using all of the available image bands simultaneously, during the attribute computation of a connected image component. Thus, the use of a wider array of attributes is enabled, targeting collections of vector pixel values instead of scalars. Specifically, a couple of new multidimensional attributes are investigated, namely, the higher-dimensional spread and higher-dimensional dispersion, describing, respectively, the extent and homogeneity of a multidimensional pixel value distribution. Their practical interest is validated through two common hyperspectral data sets, where they systematically achieve superior classification performance. en_US
dc.description.sponsorship TUBITAK [112E210] en_US
dc.description.sponsorship This work was supported by the TUBITAK Grant 112E210. en_US
dc.identifier.citationcount 17
dc.identifier.doi 10.1109/LGRS.2015.2443860
dc.identifier.endpage 2035 en_US
dc.identifier.issn 1545-598X
dc.identifier.issn 1558-0571
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-85027944532
dc.identifier.scopusquality Q1
dc.identifier.startpage 2031 en_US
dc.identifier.uri https://doi.org/10.1109/LGRS.2015.2443860
dc.identifier.uri https://hdl.handle.net/20.500.14517/298
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000359576400005
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 16
dc.subject Classification en_US
dc.subject hyperspectral images en_US
dc.subject mathematical morphology en_US
dc.subject morphological attribute profiles (APs) en_US
dc.subject remote sensing en_US
dc.subject very high resolution images en_US
dc.title Hyperspectral Image Classification With Multidimensional Attribute Profiles en_US
dc.type Article en_US
dc.wos.citedbyCount 16

Files