Regression modeling and multi-objective optimization of rheological behavior of non-Newtonian hybrid antifreeze: Using different neural networks and evolutionary algorithms

dc.authoridBasem, Ali/0000-0002-6802-9315
dc.authoridBaghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authorscopusid59113033700
dc.authorscopusid57422522900
dc.authorscopusid57338920800
dc.authorscopusid57216352565
dc.authorscopusid57196054885
dc.authorscopusid23028598900
dc.authorscopusid23028598900
dc.authorwosidhekmatifar, maboud/AFN-9654-2022
dc.authorwosidJIN, Weihong/I-3952-2013
dc.authorwosidBasem, Ali/ABB-3357-2022
dc.contributor.authorJin, Weihong
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorBaghoolizadeh, Mohammadreza
dc.contributor.authorKamoon, Saeed S.
dc.contributor.authorAl-Yasiri, Mortatha
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorHekmatifar, Maboud
dc.date.accessioned2024-05-25T12:18:45Z
dc.date.available2024-05-25T12:18:45Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Jin, Weihong] Chongqing Coll Humanities Sci & Technol, Sch Comp Engn, Chongqing 401524, Hechuan, Peoples R China; [Basem, Ali] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Kamoon, Saeed S.] Madenat Alelem Univ Coll, Nucl Phys, Baghdad 10006, Iraq; [Al-Yasiri, Mortatha] Al Amarah Univ Coll, Dept Chem Engn & Petr Ind, Maysan, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Hekmatifar, Maboud] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iranen_US
dc.descriptionBasem, Ali/0000-0002-6802-9315; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866en_US
dc.description.abstractThe research used an artificial neural network (ANN) model to examine the rheological properties of hybrid nonNewtonian ferrofluids (HNFFs) composed of Fe-CuO, water, and ethylene glycol. The performance of neural network was optimized using seven regression methods (RMs), namely Group Method of Data Handling (GMDH), Decision Tree (D-Tree), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Extreme Learning Machine (ELM), Radial Basis Function (RBF), and Multiple Linear Regression (MLR). The findings highlighted GMDH method's superior performance when compared to neural networks. R and RMSE values attained by GMDH for the objective function (OF) mu nf were 0.99436 and 2.0135, respectively. For the torque function OF, the values were 0.97652 and 4.8952. Margin of difference (MOD) calculations across various algorithms, such as MLP, SVM, RBF, D-Tree, ELM, MLR, and GMDH-Algos revealed significant disparities, indicating GMDH's efficacy. Comparison of R, RMSD, and standard deviation values between GMDH and MLR algorithms further underscored performance discrepancies. Specific parameters for which NSGA II Algo was rated highest among evaluation indices were as follows: a crossover rate of 0.7, a mutation rate of 0.02, a population size of 50, and 500 generations. Post-optimization, optimal values for mu nf and torque (To) were determined as 6.595 and 3.543, respectively, with corresponding values for 9, T, and gamma obtained as 0.185, 49.372, and 3.163, respectively. This comprehensive analysis sheds light on the effectiveness of various regression methods in modeling the rheological behavior of hybrid non-Newtonian ferrofluids, contributing to advancements in fluid dynamics research.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.icheatmasstransfer.2024.107578
dc.identifier.issn0735-1933
dc.identifier.issn1879-0178
dc.identifier.scopus2-s2.0-85192672671
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.icheatmasstransfer.2024.107578
dc.identifier.volume155en_US
dc.identifier.wosWOS:001240964700001
dc.identifier.wosqualityQ1
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.ispartofInternational Communications in Heat and Mass Transferen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRegressionsen_US
dc.subjectRheological behavioren_US
dc.subjectNon-Newtonian Ferrofluidsen_US
dc.subjectIntelligent algorithmen_US
dc.subjectANNen_US
dc.titleRegression modeling and multi-objective optimization of rheological behavior of non-Newtonian hybrid antifreeze: Using different neural networks and evolutionary algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files