Maximal B-regular integro-differential equation

dc.authorscopusid6508234400
dc.authorscopusid25936697400
dc.authorwosidShakhmurov, Veli/AAG-8871-2019
dc.contributor.authorShakhmurov, Veli
dc.contributor.authorShahmurov, Rishad
dc.date.accessioned2024-05-25T11:21:54Z
dc.date.available2024-05-25T11:21:54Z
dc.date.issued2009
dc.departmentOkan Universityen_US
dc.department-temp[Shakhmurov, Veli] Okan Univ, Dept Elect Engn & Commun, TR-34959 Istanbul, Turkey; [Shahmurov, Rishad] Okan Univ, Vocat High Sch, TR-34959 Istanbul, Turkeyen_US
dc.description.abstractBy using Fourier multiplier theorems, the maximal B-regularity of ordinary integro-differential operator equations is investigated. It is shown that the corresponding differential operator is positive and satisfies coercive estimate. Moreover, these results are used to establish maximal regularity for infinite systems of integro-differential equations.en_US
dc.identifier.citationcount9
dc.identifier.doi10.1007/s11401-007-0553-9
dc.identifier.endpage50en_US
dc.identifier.issn0252-9599
dc.identifier.issn1860-6261
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-60949094395
dc.identifier.scopusqualityQ4
dc.identifier.startpage39en_US
dc.identifier.urihttps://doi.org/10.1007/s11401-007-0553-9
dc.identifier.urihttps://hdl.handle.net/20.500.14517/636
dc.identifier.volume30en_US
dc.identifier.wosWOS:000263418200004
dc.identifier.wosqualityQ4
dc.language.isoen
dc.publisherShanghai Scientific Technology Literature Publishing Houseen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount12
dc.subjectBanach-valued Besovspacesen_US
dc.subjectOperator-valued multipliersen_US
dc.subjectBoundary value problemsen_US
dc.subjectIntegro-differential equationsen_US
dc.titleMaximal B-regular integro-differential equationen_US
dc.typeArticleen_US
dc.wos.citedbyCount11
dspace.entity.typePublication

Files