Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids

dc.authorscopusid59245339300
dc.authorscopusid57219805679
dc.authorscopusid56999952800
dc.authorscopusid56047171100
dc.authorscopusid57225906716
dc.authorscopusid58112691900
dc.authorscopusid57198301674
dc.authorwosidRajab, Husam/AAI-8991-2020
dc.authorwosidJasim, Dheyaa/GPS-5013-2022
dc.authorwosidSharma, Kamal/AAL-3794-2020
dc.authorwosidA. Hammoodi, Karrar/M-8021-2019
dc.contributor.authorShang, Yunyan
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorAlizadeh, As'ad
dc.contributor.authorSharma, Kamal
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorRajab, Husam
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-09-11T07:40:57Z
dc.date.available2024-09-11T07:40:57Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Shang, Yunyan] Xijing Univ, Sch Comp Sci, Xian 710123, Peoples R China; [Hammoodi, Karrar A.] Univ Warith Al Anbiyaa, Fac Engn, Dept Air Conditioning & Refrigerat, Karbala, Iraq; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Sharma, Kamal] GLA Univ, Inst Engn & Technol, Mathura 281406, UP, India; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Rajab, Husam] Alasala Univ, Coll Engn, Mech Engn Dept, POB 12666,King Fahad Bin Abdulaziz Rd, Amanah 31483, Dammam, Saudi Arabia; [Ahmed, Mohsen] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Phys, PO Box 1982, Dammam 31441, Saudi Arabia; [Kassim, Murizah] Univ Teknol MARA, Inst Big Data Analyt & Artificial Intelligence IBD, Shah Alam 40450, Selangor, Malaysia; [Kassim, Murizah] Univ Teknol MARA, Coll Engn, Sch Elect Engn, Shah Alam 40450, Selangor, Malaysia; [Maleki, Hamid] Isfahan Univ Technol, Dept Mech Engn, Esfahan, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanonen_US
dc.description.abstractBackground: The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/ graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task. Methods: This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters-hidden layers, neurons, activation functions, standardization, and regularization-to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis. Findings: Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis.en_US
dc.description.sponsorshipNatural Science Basic Research Plan in Shaanxi Province of China [2021JQ-869]en_US
dc.description.sponsorshipThe Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2021JQ-869. Title: Theoretical research on the selection method of nonlinear loss models based on error variables) .en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.jtice.2024.105673
dc.identifier.issn1876-1070
dc.identifier.issn1876-1089
dc.identifier.scopus2-s2.0-85200416163
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.jtice.2024.105673
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6221
dc.identifier.volume164en_US
dc.identifier.wosWOS:001288820800001
dc.identifier.wosqualityQ1
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNanofluiden_US
dc.subjectMXeneen_US
dc.subjectGrapheneen_US
dc.subjectThermal conductivityen_US
dc.subjectANNen_US
dc.subjectArtificial intelligenceen_US
dc.titleArtificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluidsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files