Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
dc.authorscopusid | 59245339300 | |
dc.authorscopusid | 57219805679 | |
dc.authorscopusid | 56999952800 | |
dc.authorscopusid | 56047171100 | |
dc.authorscopusid | 57225906716 | |
dc.authorscopusid | 58112691900 | |
dc.authorscopusid | 57198301674 | |
dc.authorwosid | Rajab, Husam/AAI-8991-2020 | |
dc.authorwosid | Jasim, Dheyaa/GPS-5013-2022 | |
dc.authorwosid | Sharma, Kamal/AAL-3794-2020 | |
dc.authorwosid | A. Hammoodi, Karrar/M-8021-2019 | |
dc.contributor.author | Shang, Yunyan | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Alizadeh, As'ad | |
dc.contributor.author | Sharma, Kamal | |
dc.contributor.author | Jasim, Dheyaa J. | |
dc.contributor.author | Rajab, Husam | |
dc.contributor.author | Salahshour, Soheil | |
dc.date.accessioned | 2024-09-11T07:40:57Z | |
dc.date.available | 2024-09-11T07:40:57Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Shang, Yunyan] Xijing Univ, Sch Comp Sci, Xian 710123, Peoples R China; [Hammoodi, Karrar A.] Univ Warith Al Anbiyaa, Fac Engn, Dept Air Conditioning & Refrigerat, Karbala, Iraq; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Sharma, Kamal] GLA Univ, Inst Engn & Technol, Mathura 281406, UP, India; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Rajab, Husam] Alasala Univ, Coll Engn, Mech Engn Dept, POB 12666,King Fahad Bin Abdulaziz Rd, Amanah 31483, Dammam, Saudi Arabia; [Ahmed, Mohsen] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Phys, PO Box 1982, Dammam 31441, Saudi Arabia; [Kassim, Murizah] Univ Teknol MARA, Inst Big Data Analyt & Artificial Intelligence IBD, Shah Alam 40450, Selangor, Malaysia; [Kassim, Murizah] Univ Teknol MARA, Coll Engn, Sch Elect Engn, Shah Alam 40450, Selangor, Malaysia; [Maleki, Hamid] Isfahan Univ Technol, Dept Mech Engn, Esfahan, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon | en_US |
dc.description.abstract | Background: The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/ graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task. Methods: This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters-hidden layers, neurons, activation functions, standardization, and regularization-to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis. Findings: Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis. | en_US |
dc.description.sponsorship | Natural Science Basic Research Plan in Shaanxi Province of China [2021JQ-869] | en_US |
dc.description.sponsorship | The Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2021JQ-869. Title: Theoretical research on the selection method of nonlinear loss models based on error variables) . | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.jtice.2024.105673 | |
dc.identifier.issn | 1876-1070 | |
dc.identifier.issn | 1876-1089 | |
dc.identifier.scopus | 2-s2.0-85200416163 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.jtice.2024.105673 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6221 | |
dc.identifier.volume | 164 | en_US |
dc.identifier.wos | WOS:001288820800001 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Nanofluid | en_US |
dc.subject | MXene | en_US |
dc.subject | Graphene | en_US |
dc.subject | Thermal conductivity | en_US |
dc.subject | ANN | en_US |
dc.subject | Artificial intelligence | en_US |
dc.title | Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |