Pattern classification with imbalanced and multiclass data for the prediction of albendazole adverse event outcomes

dc.authorscopusid6505872114
dc.authorwosidYILDIRIM, PINAR/X-1182-2019
dc.contributor.authorYıldırım, Pınar
dc.contributor.otherBilgisayar Mühendisliği / Computer Engineering
dc.date.accessioned2024-05-25T11:16:47Z
dc.date.available2024-05-25T11:16:47Z
dc.date.issued2016
dc.departmentOkan Universityen_US
dc.department-temp[Yildirim, Pinar] Okan Univ, Fac Engn & Architecture, Dept Comp Engn, TR-34959 Istanbul, Turkeyen_US
dc.description.abstractClass imbalance problem is one of the important problems for classification studies in data mining. In this study, a comparative analysis of some sampling methods was performed based on the evaluation of four classification algorithms for the prediction of albendazole adverse events outcomes. Albendazole is one of the main medications used for the treatment of a variety of parasitic worm infestations. The dataset was created from the public release of the FDA's FAERS database. Four sampling algorithms were used to analyze the dataset and their performance was evaluated by using four classifiers. Among the algorithms, ID3 with resample algorithm has higher accuracy results than the others after the application of sampling methods. This study supported that sampling methods are capable to improve the performance of learning algorithms. (C) 2016 The Authors. Published by Elsevier B.V.en_US
dc.identifier.citation12
dc.identifier.doi10.1016/j.procs.2016.04.216
dc.identifier.endpage1018en_US
dc.identifier.issn1877-0509
dc.identifier.scopus2-s2.0-84971290111
dc.identifier.scopusqualityQ2
dc.identifier.startpage1013en_US
dc.identifier.urihttps://doi.org/10.1016/j.procs.2016.04.216
dc.identifier.urihttps://hdl.handle.net/20.500.14517/159
dc.identifier.volume83en_US
dc.identifier.wosWOS:000387655000136
dc.institutionauthorYıldırım, Pınar
dc.language.isoen
dc.publisherElsevier Science Bven_US
dc.relation.ispartof7th International Conference on Ambient Systems, Networks and Technologies (ANT) / 6th International Conference on Sustainable Energy Information Technology (SEIT) -- MAY 23-26, 2016 -- Madrid, SPAINen_US
dc.relation.ispartofseriesProcedia Computer Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectImbalanced classen_US
dc.subjectunder samplingen_US
dc.subjectover samplingen_US
dc.subjectRBF Networken_US
dc.subjectIBKen_US
dc.subjectID3en_US
dc.subjectRandomtreeen_US
dc.titlePattern classification with imbalanced and multiclass data for the prediction of albendazole adverse event outcomesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isAuthorOfPublication.latestForDiscoveryd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isOrgUnitOfPublicationc8741b9b-4455-4984-a245-360ece4aa1d9
relation.isOrgUnitOfPublication.latestForDiscoveryc8741b9b-4455-4984-a245-360ece4aa1d9

Files