A Reliable Neural Network Procedure for the Novel Sixth-Order Nonlinear Singular Pantograph Diferential Model

dc.authoridSalahshour, Soheil/0000-0003-1390-3551
dc.authoridSaeed, Tareq/0000-0002-0170-5286
dc.authoridsabir, zulqurnain/0000-0001-7466-6233
dc.authorscopusid56184182600
dc.authorscopusid57203870179
dc.authorscopusid23028598900
dc.authorscopusid57193706121
dc.contributor.authorSabir, Z.
dc.contributor.authorUmar, M.
dc.contributor.authorSalahshour, S.
dc.contributor.authorSaeed, T.
dc.date.accessioned2024-09-11T07:41:52Z
dc.date.available2024-09-11T07:41:52Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-tempSabir Z., Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon; Umar M., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; Salahshour S., Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; Saeed T., Financial Mathematics and Actuarial Science (FMAS)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabiaen_US
dc.description.abstractAn innovative singular nonlinear sixth-order (SNSO) pantograph di®erential model (PDM), known as the SNSO-PDM, is the subject of this novel study along with its numerical investigation. The concepts of pantograph and conventional Emden-Fowler have been presented in the design of the novel SNSO-PDM. The models based on Emden{Fowler have huge applications in mathematics and engineering and are always di±cult to solve due to singularity. For each class of the innovative SNSO-PDM, the singularity, shape and pantograph factors are described. A reliable stochastic Levenberg-Marquardt backpropagation neural network (LMBPNN) procedure is designed for the SNSO-PDM. The correctness of the SNSOs-PDM is observed through the comparison performances of the achieved and reference outputs. The obtained results of the SNSO-PDM are considered by applying the process of training, certification, and testing to reduce the mean square error. To authenticate the e±cacy of the innovative SNSO-PDM, the numerical performances of the solutions are depicted in the sense of regression, error histograms and correlation. © 2026 World Scientific Publishing Company.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.1142/S0217984924504736
dc.identifier.issn0217-9849
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-86000774698
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1142/S0217984924504736
dc.identifier.volume39en_US
dc.identifier.wosWOS:001280068500006
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.institutionauthorSalahshour, Soheıl
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofModern Physics Letters Ben_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount1
dc.subjectEmden Fowleren_US
dc.subjectLevenberg-Marquardt Backpropagationen_US
dc.subjectNeural Networken_US
dc.subjectPantographen_US
dc.subjectSixth Orderen_US
dc.titleA Reliable Neural Network Procedure for the Novel Sixth-Order Nonlinear Singular Pantograph Diferential Modelen_US
dc.typeArticleen_US
dc.wos.citedbyCount1
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files