A reliable neural network procedure for the novel sixth-order nonlinear singular pantograph differential model

dc.authoridSalahshour, Soheil/0000-0003-1390-3551
dc.authoridSaeed, Tareq/0000-0002-0170-5286
dc.authoridsabir, zulqurnain/0000-0001-7466-6233
dc.authorscopusid56184182600
dc.authorscopusid57203870179
dc.authorscopusid23028598900
dc.authorscopusid57193706121
dc.authorwosidUmar, Dr Muhammad/HOH-8319-2023
dc.authorwosidsabir, zulqurnain/AAS-8882-2021
dc.authorwosidSaeed, Tareq/AAP-8627-2020
dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorSaeed, Tareq
dc.date.accessioned2024-09-11T07:41:52Z
dc.date.available2024-09-11T07:41:52Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Saeed, Tareq] King Abdulaziz Univ, Fac Sci, Dept Math, Financial Math & Actuarial Sci FMAS Res Grp, POB 80203, Jeddah 21589, Saudi Arabiaen_US
dc.descriptionSalahshour, Soheil/0000-0003-1390-3551; Saeed, Tareq/0000-0002-0170-5286; sabir, zulqurnain/0000-0001-7466-6233en_US
dc.description.abstractAn innovative singular nonlinear sixth-order (SNSO) pantograph differential model (PDM), known as the SNSO-PDM, is the subject of this novel study along with its numerical investigation. The concepts of pantograph and conventional Emden-Fowler have been presented in the design of the novel SNSO-PDM. The models based on Emden-Fowler have huge applications in mathematics and engineering and are always difficult to solve due to singularity. For each class of the innovative SNSO-PDM, the singularity, shape and pantograph factors are described. A reliable stochastic Levenberg-Marquardt backpropagation neural network (LMBPNN) procedure is designed for the SNSO-PDM. The correctness of the SNSOs-PDM is observed through the comparison performances of the achieved and reference outputs. The obtained results of the SNSO-PDM are considered by applying the process of training, certification, and testing to reduce the mean square error. To authenticate the efficacy of the innovative SNSO-PDM, the numerical performances of the solutions are depicted in the sense of regression, error histograms and correlation.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1142/S0217984924504736
dc.identifier.issn0217-9849
dc.identifier.issn1793-6640
dc.identifier.scopus2-s2.0-85200398229
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1142/S0217984924504736
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6247
dc.identifier.wosWOS:001280068500006
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPantographen_US
dc.subjectsixth orderen_US
dc.subjectEmden-Fowleren_US
dc.subjectneural networken_US
dc.subjectLevenberg-Marquardt backpropagationen_US
dc.titleA reliable neural network procedure for the novel sixth-order nonlinear singular pantograph differential modelen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files