A reliable neural network procedure for the novel sixth-order nonlinear singular pantograph differential model
dc.authorid | Salahshour, Soheil/0000-0003-1390-3551 | |
dc.authorid | Saeed, Tareq/0000-0002-0170-5286 | |
dc.authorid | sabir, zulqurnain/0000-0001-7466-6233 | |
dc.authorscopusid | 56184182600 | |
dc.authorscopusid | 57203870179 | |
dc.authorscopusid | 23028598900 | |
dc.authorscopusid | 57193706121 | |
dc.authorwosid | Umar, Dr Muhammad/HOH-8319-2023 | |
dc.authorwosid | sabir, zulqurnain/AAS-8882-2021 | |
dc.authorwosid | Saeed, Tareq/AAP-8627-2020 | |
dc.contributor.author | Sabir, Zulqurnain | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Salahshour, Soheil | |
dc.contributor.author | Saeed, Tareq | |
dc.date.accessioned | 2024-09-11T07:41:52Z | |
dc.date.available | 2024-09-11T07:41:52Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Saeed, Tareq] King Abdulaziz Univ, Fac Sci, Dept Math, Financial Math & Actuarial Sci FMAS Res Grp, POB 80203, Jeddah 21589, Saudi Arabia | en_US |
dc.description | Salahshour, Soheil/0000-0003-1390-3551; Saeed, Tareq/0000-0002-0170-5286; sabir, zulqurnain/0000-0001-7466-6233 | en_US |
dc.description.abstract | An innovative singular nonlinear sixth-order (SNSO) pantograph differential model (PDM), known as the SNSO-PDM, is the subject of this novel study along with its numerical investigation. The concepts of pantograph and conventional Emden-Fowler have been presented in the design of the novel SNSO-PDM. The models based on Emden-Fowler have huge applications in mathematics and engineering and are always difficult to solve due to singularity. For each class of the innovative SNSO-PDM, the singularity, shape and pantograph factors are described. A reliable stochastic Levenberg-Marquardt backpropagation neural network (LMBPNN) procedure is designed for the SNSO-PDM. The correctness of the SNSOs-PDM is observed through the comparison performances of the achieved and reference outputs. The obtained results of the SNSO-PDM are considered by applying the process of training, certification, and testing to reduce the mean square error. To authenticate the efficacy of the innovative SNSO-PDM, the numerical performances of the solutions are depicted in the sense of regression, error histograms and correlation. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1142/S0217984924504736 | |
dc.identifier.issn | 0217-9849 | |
dc.identifier.issn | 1793-6640 | |
dc.identifier.scopus | 2-s2.0-85200398229 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1142/S0217984924504736 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6247 | |
dc.identifier.wos | WOS:001280068500006 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Pantograph | en_US |
dc.subject | sixth order | en_US |
dc.subject | Emden-Fowler | en_US |
dc.subject | neural network | en_US |
dc.subject | Levenberg-Marquardt backpropagation | en_US |
dc.title | A reliable neural network procedure for the novel sixth-order nonlinear singular pantograph differential model | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |