Force law in material media, hidden momentum and quantum phases

dc.authorid Yarman, Tolga/0000-0003-3209-2264
dc.authorscopusid 7004016669
dc.authorscopusid 55893162300
dc.authorscopusid 6602787345
dc.authorwosid Yarman, Tolga/Q-9753-2019
dc.contributor.author Kholmetskii, Alexander L.
dc.contributor.author Missevitch, Oleg V.
dc.contributor.author Yarman, T.
dc.date.accessioned 2024-05-25T11:17:14Z
dc.date.available 2024-05-25T11:17:14Z
dc.date.issued 2016
dc.department Okan University en_US
dc.department-temp [Kholmetskii, Alexander L.] Belarusian State Univ, Minsk, BELARUS; [Missevitch, Oleg V.] Belarusian State Univ, Inst Nucl Problems, Minsk, BELARUS; [Yarman, T.] Okan Univ, Istanbul, Turkey; [Yarman, T.] Savronik, Eskisehir, Turkey en_US
dc.description Yarman, Tolga/0000-0003-3209-2264 en_US
dc.description.abstract We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein-Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein-Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed. (C) 2016 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 10
dc.identifier.doi 10.1016/j.aop.2016.03.004
dc.identifier.endpage 160 en_US
dc.identifier.issn 0003-4916
dc.identifier.issn 1096-035X
dc.identifier.scopus 2-s2.0-84962743526
dc.identifier.scopusquality Q2
dc.identifier.startpage 139 en_US
dc.identifier.uri https://doi.org/10.1016/j.aop.2016.03.004
dc.identifier.uri https://hdl.handle.net/20.500.14517/231
dc.identifier.volume 369 en_US
dc.identifier.wos WOS:000375521800008
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 13
dc.subject Macroscopic classical electrodynamics en_US
dc.subject Force law in material media en_US
dc.subject Lagrangian en_US
dc.subject Quantum phases en_US
dc.title Force law in material media, hidden momentum and quantum phases en_US
dc.type Article en_US
dc.wos.citedbyCount 10

Files