Radial Basis Functions Approximation Method for Time-Fractional FitzHugh-Nagumo Equation

dc.authorid Ebadi, Mohammad Javad/0000-0002-1324-6953
dc.authorid Alam, Mehboob/0000-0001-7721-7767
dc.authorscopusid 57220800065
dc.authorscopusid 24168162900
dc.authorscopusid 57211855967
dc.authorscopusid 57224894950
dc.authorscopusid 23028598900
dc.contributor.author Alam, Mehboob
dc.contributor.author Haq, Sirajul
dc.contributor.author Ali, Ihteram
dc.contributor.author Ebadi, M. J.
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2024-05-25T11:38:57Z
dc.date.available 2024-05-25T11:38:57Z
dc.date.issued 2023
dc.department Okan University en_US
dc.department-temp [Alam, Mehboob; Haq, Sirajul] GIK Inst, Fac Engn Sci, Topi 23640, Pakistan; [Ali, Ihteram] Women Univ, Dept Math & Stat, Swabi 23430, Pakistan; [Ebadi, M. J.] Chabahar Maritime Univ, Dept Language, Chabahar 9971756499, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, TR-34959 Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34353 Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, POB 13-5053, Beirut, Lebanon en_US
dc.description Ebadi, Mohammad Javad/0000-0002-1324-6953; Alam, Mehboob/0000-0001-7721-7767 en_US
dc.description.abstract In this paper, a numerical approach employing radial basis functions has been applied to solve time-fractional FitzHugh-Nagumo equation. Spatial approximation is achieved by combining radial basis functions with the collocation method, while temporal discretization is accomplished using a finite difference scheme. To evaluate the effectiveness of this method, we first conduct an eigenvalue stability analysis and then validate the results with numerical examples, varying the shape parameter c of the radial basis functions. Notably, this method offers the advantage of being mesh-free, which reduces computational overhead and eliminates the need for complex mesh generation processes. To assess the method's performance, we subject it to examples. The simulated results demonstrate a high level of agreement with exact solutions and previous research. The accuracy and efficiency of this method are evaluated using discrete error norms, including L2, L infinity, and Lrms. en_US
dc.description.sponsorship GIK Institute en_US
dc.description.sponsorship The first author would like to express gratitude to the GIK Institute for their support during his MS studies. The authors would like to express their sincere thanks to the Department of Mathematics, Chabahar Maritime University, Chabahar, Iran, for the financial support. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.3390/fractalfract7120882
dc.identifier.issn 2504-3110
dc.identifier.issue 12 en_US
dc.identifier.scopus 2-s2.0-85180705923
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.3390/fractalfract7120882
dc.identifier.uri https://hdl.handle.net/20.500.14517/1310
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:001131060900001
dc.institutionauthor Salahshour S.
dc.institutionauthor Salahshour, Soheıl
dc.language.iso en
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject fractional differential equation en_US
dc.subject meshless method en_US
dc.subject radial basis functions en_US
dc.subject FitzHugh-Nagumo equation en_US
dc.subject stability en_US
dc.title Radial Basis Functions Approximation Method for Time-Fractional FitzHugh-Nagumo Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 4

Files