A Classwise Supervised Ordering Approach for Morphology Based Hyperspectral Image Classification

dc.authorid Aptoula, Erchan/0000-0001-6168-2883
dc.authorid Lefevre, Sebastien/0000-0002-2384-8202
dc.authorscopusid 23088029900
dc.authorscopusid 23396161700
dc.authorscopusid 57203070803
dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.authorwosid Lefevre, Sebastien/S-9444-2017
dc.contributor.author Courty, Nicolas
dc.contributor.author Aptoula, Erchan
dc.contributor.author Lefevre, Sebastien
dc.date.accessioned 2024-10-15T20:19:37Z
dc.date.available 2024-10-15T20:19:37Z
dc.date.issued 2012
dc.department Okan University en_US
dc.department-temp [Courty, Nicolas; Lefevre, Sebastien] Univ Bretagne Sud, IRISA, Vannes, France; [Aptoula, Erchan] Okan Univ, Istanbul, Turkey; [Courty, Nicolas] Inst Automat, Beijing, Peoples R China en_US
dc.description Aptoula, Erchan/0000-0001-6168-2883; Lefevre, Sebastien/0000-0002-2384-8202 en_US
dc.description.abstract We present a new method for the spectral-spatial classification of hyperspectral images, by means of morphological features and manifold learning. In particular, mathematical morphology has proved to be an invaluable tool for the description of remote sensing images. However, its application to hyperspectral data is problematic, due to the absence of a complete lattice structure at higher dimensions. We address this issue by following up previous experimental indications on the interest of classwise orderings. The practical interest of the proposed approach is shown through comparison on the Pavia dataset with Extended Morphological Profiles, against which it achieves superior results. en_US
dc.description.sponsorship Chinese Academy of Sciences visiting professorship en_US
dc.description.sponsorship The authors would like to thank the reviewers for their useful comments and remarks that helped in improving this paper. This work was supported by a Chinese Academy of Sciences visiting professorship for senior international scientists grant. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 5
dc.identifier.endpage 2000 en_US
dc.identifier.isbn 9784990644109
dc.identifier.isbn 9781467322164
dc.identifier.issn 1051-4651
dc.identifier.scopus 2-s2.0-84874566044
dc.identifier.scopusquality Q2
dc.identifier.startpage 1997 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14517/6481
dc.identifier.wos WOS:000343660602022
dc.language.iso en
dc.publisher Ieee en_US
dc.relation.ispartof 21st International Conference on Pattern Recognition (ICPR) -- NOV 11-15, 2012 -- Univ Tsukuba, Tsukuba, JAPAN en_US
dc.relation.ispartofseries International Conference on Pattern Recognition
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 7
dc.subject [No Keyword Available] en_US
dc.title A Classwise Supervised Ordering Approach for Morphology Based Hyperspectral Image Classification en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 5

Files