A Classwise Supervised Ordering Approach for Morphology Based Hyperspectral Image Classification
dc.authorid | Aptoula, Erchan/0000-0001-6168-2883 | |
dc.authorid | Lefevre, Sebastien/0000-0002-2384-8202 | |
dc.authorscopusid | 23088029900 | |
dc.authorscopusid | 23396161700 | |
dc.authorscopusid | 57203070803 | |
dc.authorwosid | Aptoula, Erchan/AAI-1070-2020 | |
dc.authorwosid | Lefevre, Sebastien/S-9444-2017 | |
dc.contributor.author | Courty, Nicolas | |
dc.contributor.author | Aptoula, Erchan | |
dc.contributor.author | Lefevre, Sebastien | |
dc.date.accessioned | 2024-10-15T20:19:37Z | |
dc.date.available | 2024-10-15T20:19:37Z | |
dc.date.issued | 2012 | |
dc.department | Okan University | en_US |
dc.department-temp | [Courty, Nicolas; Lefevre, Sebastien] Univ Bretagne Sud, IRISA, Vannes, France; [Aptoula, Erchan] Okan Univ, Istanbul, Turkey; [Courty, Nicolas] Inst Automat, Beijing, Peoples R China | en_US |
dc.description | Aptoula, Erchan/0000-0001-6168-2883; Lefevre, Sebastien/0000-0002-2384-8202 | en_US |
dc.description.abstract | We present a new method for the spectral-spatial classification of hyperspectral images, by means of morphological features and manifold learning. In particular, mathematical morphology has proved to be an invaluable tool for the description of remote sensing images. However, its application to hyperspectral data is problematic, due to the absence of a complete lattice structure at higher dimensions. We address this issue by following up previous experimental indications on the interest of classwise orderings. The practical interest of the proposed approach is shown through comparison on the Pavia dataset with Extended Morphological Profiles, against which it achieves superior results. | en_US |
dc.description.sponsorship | Chinese Academy of Sciences visiting professorship | en_US |
dc.description.sponsorship | The authors would like to thank the reviewers for their useful comments and remarks that helped in improving this paper. This work was supported by a Chinese Academy of Sciences visiting professorship for senior international scientists grant. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citationcount | 5 | |
dc.identifier.endpage | 2000 | en_US |
dc.identifier.isbn | 9784990644109 | |
dc.identifier.isbn | 9781467322164 | |
dc.identifier.issn | 1051-4651 | |
dc.identifier.scopus | 2-s2.0-84874566044 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1997 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6481 | |
dc.identifier.wos | WOS:000343660602022 | |
dc.language.iso | en | |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 21st International Conference on Pattern Recognition (ICPR) -- NOV 11-15, 2012 -- Univ Tsukuba, Tsukuba, JAPAN | en_US |
dc.relation.ispartofseries | International Conference on Pattern Recognition | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 7 | |
dc.subject | [No Keyword Available] | en_US |
dc.title | A Classwise Supervised Ordering Approach for Morphology Based Hyperspectral Image Classification | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 5 |