Using adaptive neuro-fuzzy inference system for predicting thermal conductivity of silica -MWCNT-alumina/water hybrid nanofluid

dc.authorid Eftekhari, SeyedAli/0000-0002-9730-4232
dc.authorid Jasim, Dheyaa Jumaah/0000-0001-7259-3392
dc.authorid toghraie, davood/0000-0003-3344-8920
dc.authorscopusid 58141407100
dc.authorscopusid 57739925100
dc.authorscopusid 22136195900
dc.authorscopusid 57225906716
dc.authorscopusid 57222062476
dc.authorscopusid 23028598900
dc.authorscopusid 36807246100
dc.authorwosid Eftekhari, SeyedAli/AAG-3342-2019
dc.authorwosid Jasim, Dheyaa Jumaah/GPS-5013-2022
dc.contributor.author Zhou, Yuan
dc.contributor.author Derakhshanfard, Amir Hossein
dc.contributor.author Sajadi, S. Mohammad
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Nasajpour-Esfahani, Navid
dc.contributor.author Salahshour, Soheil
dc.contributor.author Eftekhari, S. Ali
dc.date.accessioned 2024-05-25T11:38:55Z
dc.date.available 2024-05-25T11:38:55Z
dc.date.issued 2023
dc.department Okan University en_US
dc.department-temp [Zhou, Yuan] Shanghai Maritime Univ, Sch Logist Engn, Shanghai 201306, Peoples R China; [Derakhshanfard, Amir Hossein] Islamic Azad Univ, Dept Mech, Hamedan Branch, Hamadan, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Amarah, Iraq; [Nasajpour-Esfahani, Navid] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese American Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Toghraie, D.; Eftekhari, S. Ali] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran en_US
dc.description Eftekhari, SeyedAli/0000-0002-9730-4232; Jasim, Dheyaa Jumaah/0000-0001-7259-3392; toghraie, davood/0000-0003-3344-8920 en_US
dc.description.abstract In this study, the thermal conductivity (knf) of Silicon Oxide-MWCNT-Alumina/Water hybrid nanofluid (HNF) is predicted versus solid volume fraction (SVF) and temperature. For this reason, various combinations of SVF and temperature are considered from SVF= 0.1-0.5% and 20-60 (degrees C) respectively. Then, an adaptive neuro-fuzzy inference system (ANFIS) has been effectively used to model the knf of HNF as one of the effective machine learning techniques. Various shapes of membership functions are considered and the generalized bell shape membership function showed to have acceptable accuracy for knf prediction using an ANFIS-based model. Moreover, the outcomes reveal that the effect of SVF is higher than temperature influence on the knf of HNF. Specifically, when the SVF is increased from 0.1% to 0.5%, there is an approximate 25% increase in knf. Conversely, an increase in temperature leads to a smaller ratio of knf increment. When the temperature rises from 20 degrees to 60 degrees C, knf only increases by less than 10%. The highest error value is found at phi = 0.2% and T = 60 degrees C, amounting to 0.01128 W/mK. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.mtcomm.2023.107612
dc.identifier.issn 2352-4928
dc.identifier.scopus 2-s2.0-85177617658
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.mtcomm.2023.107612
dc.identifier.uri https://hdl.handle.net/20.500.14517/1306
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:001123391000001
dc.identifier.wosquality Q2
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Adaptive neuro-fuzzy en_US
dc.subject Thermal conductivity en_US
dc.subject Silicon oxide en_US
dc.subject MWCNT -alumina-water en_US
dc.subject Hybrid nanofluid en_US
dc.title Using adaptive neuro-fuzzy inference system for predicting thermal conductivity of silica -MWCNT-alumina/water hybrid nanofluid en_US
dc.type Article en_US
dc.wos.citedbyCount 2

Files