A novel insight into the design of perforated-finned heat sinks based on a hybrid procedure: Computational fluid dynamics, machine learning, multi-objective optimization, and multi-criteria decision-making

dc.authorid Abdollahi, Seyyed Amirreza/0000-0002-9576-7989
dc.authorid Kolsi, Lioua/0000-0003-4368-7458
dc.authorid Ahmed, Mohsen/0000-0001-9305-5040
dc.authorscopusid 57936010800
dc.authorscopusid 58119833400
dc.authorscopusid 56999952800
dc.authorscopusid 57225906716
dc.authorscopusid 57404280300
dc.authorscopusid 58805751100
dc.authorscopusid 16309887800
dc.authorwosid Abdollahi, Seyyed Amirreza/JDW-1011-2023
dc.authorwosid AICH, WALID/AAQ-1695-2021
dc.authorwosid Ben Said, Lotfi/J-6023-2019
dc.authorwosid Jasim, Dheyaa/GPS-5013-2022
dc.authorwosid Kolsi, Lioua/F-9423-2016
dc.authorwosid Ahmed, Mohsen/ABF-9207-2021
dc.contributor.author Abdollahi, Seyyed Amirreza
dc.contributor.author Alenezi, Anwur
dc.contributor.author Alizadeh, As 'ad
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Ahmed, Mohsen
dc.contributor.author Fezaa, Laith H. A.
dc.contributor.author Maleki, Hamid
dc.date.accessioned 2024-05-25T12:18:51Z
dc.date.available 2024-05-25T12:18:51Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Abdollahi, Seyyed Amirreza] Univ Tabriz, Fac Mech Engn, Tabriz, Iran; [Alenezi, Anwur] Kuwait Inst Sci Res, Water Res Ctr, POB 24885, Safat 13109, Kuwait; [Alizadeh, As 'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Alizadeh, As 'ad] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Istanbul, Turkiye; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Ahmed, Mohsen] Imam Abdulrahman Bin Faisal Univ, Dept Phys, POB 1982, Dammam 31441, Eastern Provinc, Saudi Arabia; [Fezaa, Laith H. A.] Al Zahrawi Univ Coll, Dept Opt Tech, Karbala, Iraq; [Aich, Walid; Ben Said, Lotfi; Kolsi, Lioua] Univ Hail, Coll Engn, Dept Mech Engn, Hail 81451, Saudi Arabia; [Aich, Walid; Kolsi, Lioua] Univ Monastir, Lab Meteorol & Energy Syst, Monastir 5000, Tunisia; [Ben Said, Lotfi] Univ Sfax, Natl Engn Sch Sfax, Lab Electrochem & Environm LEE, ENIS, Sfax 5080, Tunisia; [Maleki, Hamid] Isfahan Univ Technol, Dept Mech Engn, Esfahan, Iran en_US
dc.description Abdollahi, Seyyed Amirreza/0000-0002-9576-7989; Kolsi, Lioua/0000-0003-4368-7458; Ahmed, Mohsen/0000-0001-9305-5040 en_US
dc.description.abstract The optimal design of heat sinks presents a challenge for engineers. Using longitudinal perforations is an innovative technique employed in the design of parallel finned heat sinks that can be applied to various equipment. This technique leads to the simultaneous improvement of the heat transfer rate, pressure drop, and weight of heat sinks. The size (phi) and shape of the perforations alongside the Reynolds number are considered design variables. The results obtained from machine learning showed that the combinatorial algorithm is more reliable in modeling various objectives compared to the GMDH neural networks. The Pareto fronts generated by the NSGA-II algorithm indicated that >75% of the optimal points in the perforated-finned heat sinks (PFHSs) with square perforations had a phi >= 0 .6. The reason for this superiority is the geometric compatibility between the square perforations and rectangular fins. This compatibility enables the possibility of enlarging the perforations, resulting in improvements in essential parameters like heat dissipation, drag force, and overall heat sink volume. Various scenarios for weighting objectives in the multi-criteria decision-making (MCDM) process revealed that square-based PFHSs with Reynolds numbers around 39,900 in a wide range of perforation sizes could be applied as optimal design in real-world applications. en_US
dc.description.sponsorship University of Hail, UOH, (RG-23 008); University of Hail, UOH en_US
dc.description.sponsorship Scientific Research Deanship at University of Ha'il, Saudi Arabia [RG-23 008] en_US
dc.description.sponsorship <B>Acknowledgement</B> This research has been funded by Scientific Research Deanship at University of Ha'il, Saudi Arabia through project number RG-23 008. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 2
dc.identifier.doi 10.1016/j.icheatmasstransfer.2024.107535
dc.identifier.issn 0735-1933
dc.identifier.issn 1879-0178
dc.identifier.scopus 2-s2.0-85192145094
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.icheatmasstransfer.2024.107535
dc.identifier.volume 155 en_US
dc.identifier.wos WOS:001240206100001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof International Communications in Heat and Mass Transfer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject Finned heat sink en_US
dc.subject Perforated fins en_US
dc.subject Computational fluid dynamics en_US
dc.subject Machine learning en_US
dc.subject Multi-objective optimization en_US
dc.subject Multi-criteria decision-making en_US
dc.title A novel insight into the design of perforated-finned heat sinks based on a hybrid procedure: Computational fluid dynamics, machine learning, multi-objective optimization, and multi-criteria decision-making en_US
dc.type Article en_US
dc.wos.citedbyCount 10

Files