An advanced scheme based on artificial intelligence technique for solving nonlinear riccati systems

dc.contributor.author Admon, Mohd Rashid
dc.contributor.author Senu, Norazak
dc.contributor.author Ahmadian, Ali
dc.contributor.author Majid, Zanariah Abdul
dc.date.accessioned 2024-09-11T07:40:59Z
dc.date.available 2024-09-11T07:40:59Z
dc.date.issued 2024
dc.description Ahmadian, Ali/0000-0002-0106-7050 en_US
dc.description.abstract Recently, one artificial intelligence technique, known as artificial neural network (ANN), has brought advanced development to the arena of mathematical research. It competes effectively with other traditional methods in providing accurate solutions for fractional differential equations (FDEs). This work aims to implement a feedforward ANN with two hidden layers to solve nonlinear systems based on the fractional Riccati differential equation (FRDE). The network parameters are trained using the Adam optimization method with the aid of automatic differentiation. A vectorization algorithm is designated for the selected step to make the computation process more efficient. Two different initial value problems in integer-order derivatives and fractional-order derivatives are discussed. Numerical results demonstrate that the proposed method not only closely matches the exact solutions and reference solutions but also is more accurate than other existing methods. en_US
dc.description.sponsorship Fundamental Research Grant Scheme [FRGS/1/2022/STG06/UPM/02/2]; Malaysia Ministry of Education and Fellow Scheme en_US
dc.description.sponsorship This research was funded by the Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) awarded by the Malaysia Ministry of Education and Fellow Scheme under Universiti Teknologi Malaysia. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s40314-024-02865-6
dc.identifier.issn 2238-3603
dc.identifier.issn 1807-0302
dc.identifier.scopus 2-s2.0-85200907876
dc.identifier.uri https://doi.org/10.1007/s40314-024-02865-6
dc.identifier.uri https://hdl.handle.net/20.500.14517/6223
dc.language.iso en
dc.publisher Springer Heidelberg en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial neural network en_US
dc.subject Fractional riccati differential equation en_US
dc.subject Adam optimization method en_US
dc.subject Vectorization algorithm en_US
dc.title An advanced scheme based on artificial intelligence technique for solving nonlinear riccati systems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ahmadian, Ali/0000-0002-0106-7050
gdc.author.scopusid 37066896900
gdc.author.scopusid 55670963500
gdc.author.scopusid 55602202100
gdc.author.scopusid 15837562800
gdc.author.wosid Senu, Norazak/G-2776-2014
gdc.author.wosid Ahmadian, Ali/N-3697-2015
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Okan University en_US
gdc.description.departmenttemp [Admon, Mohd Rashid; Senu, Norazak; Majid, Zanariah Abdul] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia; [Admon, Mohd Rashid] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu, Johor, Malaysia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 43 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.wos WOS:001286544500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.scopus.citedcount 0
gdc.wos.citedcount 0

Files