Optimal Control in Geometric Dynamics: Applications To AI Algorithm Optimization

dc.authorscopusid 56224779700
dc.contributor.author Ferrara, Massimiliano
dc.date.accessioned 2025-07-15T19:03:10Z
dc.date.available 2025-07-15T19:03:10Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Ferrara, Massimiliano] Mediterranea Univ Reggio Calabria, Dept Law Econ & Human Sci, Reggio Calabria, Italy; [Ferrara, Massimiliano] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description.abstract This paper extends the fundamental concepts of geometric dynamics and optimal control theory, inspired by the pioneering work of Professor Constantin Udriste, to develop novel optimization algorithms for artificial intelligence systems. We establish connections between nonholonomic macroeconomic systems and reinforcement learning by formulating a multi-time maximum principle framework that integrates sub-Riemannian geometry. Our proposed methodology demonstrates how constrained variational problems can optimize neural network training trajectories through a bang-bang control approach. An empirical case study implements this theoretical framework to optimize a deep reinforcement learning algorithm, showing significant improvements in convergence speed and stability compared to standard approaches. The results demonstrate the practical value of geometric dynamics principles in modern Artificial Intelligence (AI) optimization, establishing a bridge between classical mathematical control theory and contemporary machine learning challenges. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.37256/cm.6320257204
dc.identifier.endpage 3845 en_US
dc.identifier.issn 2705-1064
dc.identifier.issn 2705-1056
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-105009356594
dc.identifier.scopusquality Q4
dc.identifier.startpage 3832 en_US
dc.identifier.uri https://doi.org/10.37256/cm.6320257204
dc.identifier.uri https://hdl.handle.net/20.500.14517/8063
dc.identifier.volume 6 en_US
dc.identifier.wos WOS:001519248600014
dc.identifier.wosquality N/A
dc.institutionauthor Ferrara, Massimiliano
dc.language.iso en en_US
dc.publisher Universal Wiser Publisher en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Geometric Dynamics en_US
dc.subject Optimal Control en_US
dc.subject Deep Learning en_US
dc.title Optimal Control in Geometric Dynamics: Applications To AI Algorithm Optimization en_US
dc.type Article en_US

Files