Redefinition of the energy-momentum operator: motivation and implications

dc.authorid Kholmetskii, Alexander/0000-0002-5182-315X
dc.authorscopusid 7004016669
dc.authorscopusid 6602787345
dc.authorscopusid 55893162300
dc.contributor.author Kholmetskii, A. L.
dc.contributor.author Yarman, T.
dc.contributor.author Missevitch, O. V.
dc.date.accessioned 2024-05-25T11:38:43Z
dc.date.available 2024-05-25T11:38:43Z
dc.date.issued 2023
dc.department Okan University en_US
dc.department-temp [Kholmetskii, A. L.] Belarusian State Univ, Minsk, BELARUS; [Yarman, T.] Istanbul Okan Univ, Istanbul, Turkiye; [Missevitch, O. V.] Belarusian State Univ, Inst Nucl Problems, Minsk, BELARUS en_US
dc.description Kholmetskii, Alexander/0000-0002-5182-315X en_US
dc.description.abstract The paper is motivated by our idea to re-define the momentum operator in quantum physics through the sum of mechanical and electromagnetic momenta for the system "charged particle in an electromagnetic field" instead of its canonical momentum, which occurred successful in describing quantum phase effects for charges and dipoles (Kholmetskii et al. in Ann. Phys. 392:49, 2018; Sci. Rep. 8:11,937, 2018). Furthermore, we show how a recently obtained expression for the "point-by-point" quantum phase of a charged particle in the framework of a fully quantized model of the Aharonov-Bohm effect (Marletto and Vedral in Phys. Rev. Lett. 125:040,401, 2020) supports the re-definition of the momentum operator in quantum mechanics from the theoretical side. These results motivated us to re-analyze the fundamental equations of relativistic quantum mechanics with a new energy-momentum operator. In this contribution, we solve the Dirac equation for an electrically bound electron with a new energy-momentum operator and extend the obtained solutions to the precise physics of simple atoms in the form of an effective theory, which does not touch the diagram technique of QED. We find that for majority of problems of precise physics of simple atoms, both definitions of the energy-momentum operator, yield indistinguishable results with modern measurement precision. An important exception is the spectroscopy of ortho-positronium, which occurs crucial in choosing the correct expression for the energy-momentum operator, and it shows that the available measurement data rather support the new definition of this operator. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1140/epjp/s13360-023-03838-0
dc.identifier.issn 2190-5444
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85149985368
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1140/epjp/s13360-023-03838-0
dc.identifier.uri https://hdl.handle.net/20.500.14517/1274
dc.identifier.volume 138 en_US
dc.identifier.wos WOS:000948387300001
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 3
dc.subject [No Keyword Available] en_US
dc.title Redefinition of the energy-momentum operator: motivation and implications en_US
dc.type Article en_US
dc.wos.citedbyCount 3

Files