Design of stochastic neural networks for the fifth order system of singular engineering model

dc.authorscopusid 56184182600
dc.authorscopusid 55405373600
dc.authorscopusid 56506688100
dc.authorscopusid 56704936300
dc.authorscopusid 23028598900
dc.authorscopusid 57203870179
dc.contributor.author Sabir, Zulqurnain
dc.contributor.author Babatin, M. M.
dc.contributor.author Hashem, Atef F.
dc.contributor.author Abdelkawy, M. A.
dc.contributor.author Salahshour, Soheil
dc.contributor.author Umar, Muhammad
dc.date.accessioned 2024-05-25T11:37:46Z
dc.date.available 2024-05-25T11:37:46Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Byblos, Lebanon; [Babatin, M. M.; Hashem, Atef F.; Abdelkawy, M. A.] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia; [Hashem, Atef F.; Abdelkawy, M. A.] Beni Suef Univ, Fac Sci, Dept Math & Informat Sci, Bani Suwayf, Egypt; [Salahshour, Soheil; Umar, Muhammad] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description.abstract The current investigations provides a stochastic platform using the computational Levenberg-Marquardt Backpropagation (LMB) neural network (NN) approach, i.e., LMB-NN for solving the fifth order Emden-Fowler system (FOEFS) of equations. The singular models are always considered tough due to the singularity by using the traditional schemes, hence the stochastic solvers handle efficiently the singular point exactly at zero. The solution of four types of equations based on the FOEFS is presented by using the singularity and shape factor values. To calculate the approximate solutions of the FOEFS of equations, the training, validation and testing performances are used to reduce the mean square error. The selection of the training data is 70%, while testing and validation performances are used as 10% and 20%. The scheme's correctness is performed through the result's comparison along with the negligible absolute error performances for each example of the FOEFS. Moreover, the relative study through different investigations-based error histograms, and correlation update the efficacy of the scheme. en_US
dc.description.sponsorship Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-RP23088] en_US
dc.description.sponsorship <BOLD>Funding</BOLD> This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23088) . en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.engappai.2024.108141
dc.identifier.issn 0952-1976
dc.identifier.issn 1873-6769
dc.identifier.scopus 2-s2.0-85186538424
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.engappai.2024.108141
dc.identifier.uri https://hdl.handle.net/20.500.14517/1216
dc.identifier.volume 133 en_US
dc.identifier.wos WOS:001198283100001
dc.identifier.wosquality Q1
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 12
dc.subject Fifth order singular system en_US
dc.subject Shape factor en_US
dc.subject Mean square error en_US
dc.subject Levenberg-marquardt backpropagation en_US
dc.subject Multiple singularity en_US
dc.subject Emden-fowler en_US
dc.title Design of stochastic neural networks for the fifth order system of singular engineering model en_US
dc.type Article en_US
dc.wos.citedbyCount 11

Files