A molecular dynamics study of the effect of initial pressure on the mechanical resilience of aluminum polycrystalline

dc.authorscopusid 59310106800
dc.authorscopusid 57225906716
dc.authorscopusid 56999952800
dc.authorscopusid 57157991800
dc.authorscopusid 23028598900
dc.authorscopusid 57208127315
dc.authorwosid hekmatifar, maboud/AFN-9654-2022
dc.authorwosid Jasim, Dheyaa/GPS-5013-2022
dc.contributor.author Ali, Ali B. M.
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Alizadeh, As'ad
dc.contributor.author Chan, Choon Kit
dc.contributor.author Salahshour, Soheil
dc.contributor.author Hekmatifar, Maboud
dc.date.accessioned 2024-10-15T20:20:23Z
dc.date.available 2024-10-15T20:20:23Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Ali, Ali B. M.] Univ Warith Al Anbiyaa, Coll Engn, Air Conditioning Engn Dept, Karbala, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Chan, Choon Kit] INTI Int Univ, Fac Engn & Quant Surveying, Persiaran Perdana BBN, Nilai 71800, Negeri Sembilan, Malaysia; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon en_US
dc.description.abstract Polycrystalline materials are essential in engineering due to their ability to withstand various forces, heat, and environmental conditions. The arrangement of atoms within these crystals significantly affects their mechanical properties. This study used molecular dynamics simulations to explore how initial pressure affects the mechanical resilience of aluminum polycrystals. Aluminum composite materials, known for their strength, flexibility, and environmental sustainability, are the focus of this investigation. We particularly investigated stress- strain reactions at 1, 2, and 3 bar initial pressures. Reduced free volume causes atomic migration to be hampered as pressure increases, therefore affecting mean square displacement and diffusion coefficient. The results show that ultimate strength and Young's modulus of the polycrystalline samples were 30 and 6.64 GPa at 1 bar pressure. Moreover, the results demonstrated a notable decrease in mechanical performance by increasing pressure; the ultimate strength and Young's modulus of the polycrystalline samples diminished to 5.66 GPa and 22.43 GPa, respectively, at 3 bar. Furthermore, the heat flux increased by rising initial pressure in the Al- polycrystalline sample due to the compression of material that reduced atomic distances. This improved atomic arrangement facilitated more efficient heat transfer. These insights are essential for engineering applications, as they establish a foundation for the production of aluminum components that maintain structural integrity in the face of extreme conditions. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.rineng.2024.102879
dc.identifier.issn 2590-1230
dc.identifier.scopus 2-s2.0-85203862812
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.rineng.2024.102879
dc.identifier.uri https://hdl.handle.net/20.500.14517/6575
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:001316753800001
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Al polycrystal en_US
dc.subject Stress-strain curve en_US
dc.subject Initial pressure en_US
dc.subject Molecular dynamics simulation en_US
dc.subject Product innovation en_US
dc.title A molecular dynamics study of the effect of initial pressure on the mechanical resilience of aluminum polycrystalline en_US
dc.type Article en_US
dc.wos.citedbyCount 1

Files