Optimization of nanofluid flow in a mini-channel with semi-porous fins using response surface methodology based on the Box-Behnken design

dc.authorscopusid 56913168800
dc.authorscopusid 57204781610
dc.authorscopusid 57426334600
dc.authorscopusid 36807246100
dc.authorscopusid 23028598900
dc.authorwosid Dehghani, Mostafa/AAJ-4962-2020
dc.contributor.author Javadpour, Seyed Morteza
dc.contributor.author Dehghani, Mostafa
dc.contributor.author Mahmoudi, Vahid
dc.contributor.author Toghraie, Davood
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2024-11-15T19:38:53Z
dc.date.available 2024-11-15T19:38:53Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Javadpour, Seyed Morteza] Univ Gonabad, Mech Engn Dept, Gonabad, Iran; [Dehghani, Mostafa] Univ Sistan & Baluchestan, Mech Engn Dept, Zahedan, Iran; [Mahmoudi, Vahid] Univ Gonabad, Chem Engn Dept, Gonabad, Iran; [Toghraie, Davood] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon en_US
dc.description.abstract In this study, the geometric and hydrodynamic optimization of CuO nanofluid flow inside a mini-channel with semi-porous fins is investigated by the response surface methodology (RSM). The effects of Reynolds number (Re), porosity (epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}), the volume fraction of nanoparticles (alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}), and three geometric parameters (solid and porous rib heights (HS,HP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\text{S}},{H}_{\text{P}}$$\end{document}), and the pitch of ribs (PR)) on the Nusselt number (Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document}) and pumping power (PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document}) are studied, numerically. By selecting 5 levels for each of the mentioned design variables, the Box-Behnken experimental design method decreases the number of total experiments from 15,625 to 54 numerical tests. Then, the CFD results were computed using the Ansys Fluent 19. Based on the CFD results and the ANOVA method, two unique quadratic models were proposed to predict the Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document} and PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document} in the studied range. The ANOVA method revealed that all independent factors were significant and remained in the initial model for Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document}, while for the PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document} response, the effect of epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upvarepsilon $$\end{document} was insignificant. The graphical interpretation of results shows that to increase Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document} and to avoid increasing the PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document} very much, it is suitable to increase alpha to 0.07 while keeping the Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Re}$$\end{document} less than 55. Finally, the optimization of the design variables based on the RSM method with alpha=0.7\%,epsilon=30\%,Re=55.72,HS=0.3mm,HP=0.7mm,and PR=6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 0.7{\text{\% }},{ }\varepsilon = 30{\text{\% }},{\text{ Re}} = 55.72,{ }H_{{\text{S}}} = 0.3{\text{ mm}},{ }H_{{\text{P}}} = 0.7{\text{ mm}},{\text{ and PR}} = 6{\text{ mm}}$$\end{document} results in a slight increase in Nu (9%) and a significant decrease in pumping power (more than three times reduction). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s10973-024-13616-4
dc.identifier.issn 1388-6150
dc.identifier.issn 1588-2926
dc.identifier.scopus 2-s2.0-85207934496
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s10973-024-13616-4
dc.identifier.uri https://hdl.handle.net/20.500.14517/7001
dc.identifier.wos WOS:001344779200002
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Semi-porous fin en_US
dc.subject Response surface methodology (RSM) en_US
dc.subject ANOVA en_US
dc.subject Optimization en_US
dc.subject Nusselt number en_US
dc.subject Pumping power en_US
dc.title Optimization of nanofluid flow in a mini-channel with semi-porous fins using response surface methodology based on the Box-Behnken design en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files